

INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

` o

MARKET DATA B3: BINARY UMDF

Messaging Specification Guidelines – Version 1.9.0.5

Last modified: January 2nd, 2025

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

2 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

CONTACTS

• Services Development Department: handles all enquiries for connectivity
setup and general exchange supported services.

o contratacao@b3.com.br
o +55 11 2565-5081

• Certification and Testing Center: performs certification of all software
solutions applying for Order Entry and Market Data connectivity.

o tradingcertification@b3.com.br
o +55 11 2565-5029

• Trading Support Department (TSG): provides real time connectivity
monitoring and troubleshooting.

o tradingsupport@b3.com.br
o +55 11 2565-5021

mailto:contratacao@b3.com.br
mailto:tradingcertification@b3.com.br
mailto:tradingsupport@b3.com.br

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

3 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

1. CHANGE LOG 7

2. PREFACE 10

2.1 ABBREVIATIONS 11

2.2 GLOSSARY 11

3. TRADING HOURS 13

3.1 TRADING SESSION HOURS 13

3.2 EXCHANGE HOLIDAYS 13

4. FEATURES IN BINARY UMDF 13

4.1 SIMPLE BINARY ENCODING 14

4.2 TRADING PLATFORM EVENTS 14

 ORDER ACTION-DRIVEN EVENTS 14

 MARKET DATA MESSAGES THAT DO NOT BELONG TO AN EVENT 15

 EVENTS THAT DO NOT GENERATE MARKET DATA 15

4.3 TRACKING OF BOOK UPDATES 15

5. IMPLEMENTING SBE 16

5.1 SBE DESIGN PRINCIPLES 16

5.2 SBE SPECIFICATION 16

5.3 SBE FIELD ORDER AND SPEED OF ACCESS 16

 ALIGNMENT AND PADDING 17

 SIMILAR MESSAGES WITH COMMON FIELDS 17

5.4 NESTED FIX MESSAGES VS FLATTENED SBE MESSAGES 17

5.5 SBE, OPTIONAL FIELDS AND DEFAULT VALUES, EMPTY FIELDS 18

 DECIMAL ‘NULL’ VALUE 20

5.6 SBE TEMPLATES 20

5.7 FIX MESSAGE AND SBE TEMPLATES 21

5.8 LIMITING THE SBE MESSAGE SIZE 21

5.9 SCHEMA EXTENSION MECHANISM 21

 OBJECTIVE 21

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

4 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 MESSAGE SCHEMA FEATURES FOR EXTENSION 22

 WIRE FORMAT FEATURES FOR EXTENSION 23

5.10 COMPATIBILITY STRATEGY TO HANDLE SCHEMA EVOLUTION 24

 INCREMENT SCHEMA VERSION AND CHANGES ARE MADE FOR SOME TEMPLATES 24

 SCHEMA VERSION IS INCREMENTED, NEW TEMPLATE IS CREATED FOR EXISTING

MESSAGE 25

6. SYSTEM ARCHITECTURE 27

6.1 MARKET DATA CHANNEL 27

6.2 INCREMENTAL STREAM 28

6.3 SNAPSHOT RECOVERY STREAM 29

6.4 INSTRUMENT DEFINITION STREAM 30

6.5 ENGAGEMENT RULES 30

 LATEST SBE TEMPLATES 30

 NETWORK CONFIGURATION 30

 MARKET DATA NETWORK CONTINGENCY FEED 31

 MESSAGE FRAMING 32

 PACKET STRUCTURE 32

 EXAMPLES OF SBE MESSAGE ENCODING 35

 MESSAGES, PACKETS AND EVENTS 38

 INSTRUMENT DEFINITION STREAM PROCESSING 38

 INITIAL MARKET DATA SYNCHRONIZATION PROCEDURE 40

 START OF DAY “HEARTBEATS” – SEQUENCE MESSAGES 42

 STREAM RESET MESSAGE 43

 CHANNEL RESET 44

 EMPTYBOOK (BOOK RESET) 47

7. RECOVERY 48

7.1 SNAPSHOT MESSAGES 48

7.2 SNAPSHOTREFRESH_HEADER 50

7.3 SNAPSHOTREFRESH_ORDERS 51

7.4 SNAPSHOT RECOVERY 53

 USING RPTSEQ AND LASTRPTSEQ FOR SYNCHRONIZATION 57

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

5 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

7.5 SEQUENCE MESSAGE 61

8. MARKET DATA ENTRY TYPES 62

9. TRADING EVENT PROCESSING – MATCHEVENTINDICATOR 65

10. ORDER BOOK 67

10.1 BOOK: POSITION NUMBER 67

11. INCREMENTAL ORDER BOOK MANAGEMENT 68

11.1 INCREMENTAL BOOK MANAGEMENT–- MBO 68

 ORDER DEPTH BOOK 69

 DELETE FROM 71

 DELETE THRU 72

12. TRADE AND REAL-TIME STATISTICAL DATA 73

12.1 EXECUTIONSUMMARY 74

 MATCHING DISCLOSED QUANTITY ORDERS (ICEBERG ORDERS) 76

 TRIGGERING SELF-TRADE PREVENTION DURING A MATCHING 77

 TRIGGERING SEVERAL STOP ORDERS/TRADES IN A SINGLE MATCHING EVENT 79

12.2 EXECUTIONSTATISTICS 81

12.3 TRADE 82

 TRADECONDITION 83

 TRDSUBTYPE 83

 RELATIONSHIP BETWEEN TRADECONDITION AND TRDSUBTYPE 83

12.4 TRADE BUST 84

12.5 FORWARD TRADE 85

12.6 LAST TRADE PRICE 85

12.7 TRADING SESSION HIGH/LOW PRICE 86

12.8 CALCULATION OF TRADING SESSION VWAP PRICE 87

12.9 OPENING PRICE / THEORETICAL OPENING PRICE / CLOSING PRICE 87

 OPENINGPRICE MESSAGE 87

 THEORETICALOPENINGPRICE MESSAGE 88

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

6 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 CLOSINGPRICE MESSAGE 88

12.10 AUCTION IMBALANCE 89

 AUCTIONIMBALANCE MESSAGE 89

12.11 PRICE AND QUANTITY BANDS INFORMATION 89

 PRICEBAND MESSAGE 91

 QUANTITYBAND MESSAGE 92

 SETTLEMENTPRICE MESSAGE 92

 OPENINTEREST MESSAGE 94

 SPECIFIC USAGE FOR EACH TYPE OF BAND AND TUNNEL 95

13. GROUP PHASE/INSTRUMENT STATE INFORMATION 96

13.1 INSTRUMENT STATES 98

13.2 TRADING PHASES 99

13.3 TRADING STATISTICS RESET 100

13.4 GROUP PHASE AND INSTRUMENT STATE IN THE SNAPSHOT STREAM 100

14. DERIVATIVES/FX SPECIFIC MARKET DATA FUNCTIONALITY 100

14.1 OPTION STRIKE PRICE 100

15. TRADE VOLUME, VWAP AND NUMBER OF TRADES 101

16. IMPLIEDS 101

16.1 IMPLIED IN ORDERS 102

16.2 IMPLIED OUT ORDERS 103

16.3 MATCH THAT INVOLVES AN IMPLIED ORDER 103

17. MISCELLANEOUS REMARKS 105

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

7 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

1. Change Log

Date Versio
n

Description Autho
r

Mar. 31st, 2020 1.0 - Initial version. AYSF,
RDRC

Apr. 29th, 2020 1.1 - Including the version 1.0 of SBE Market Data specification. AYSF,
EEW,
RDRC

May 12th, 2020 1.2 - Clarifying snapshot, book reset, trade summary, including
diagrams, including the SBE message names.

AYSF,
EEW,
RDRC

Jun. 25th, 2020 1.3 - A diagram for the handling of Order Book reset was reincluded.

- Included a message for 269=c and other for Last Trade Price.

- Clarifying the handling of null values by SBE.

- Order Priority is also available for MBO diffusion.

- Template version: 1.1

EEW

Feb. 16th, 2022 1.3 - MBO only; removed several messages.

- Template version: 1.3

EEW,
RNKH

Mar. 10th, 2022 1.3.1 - Revised text. Template version: 1.3.1. EEW,
RNKH
, ANJ

Apr. 6th, 2022 1.3.2 - Minor text revisions due to feedback.

- Fixed message examples.

EEW,
RNKH

Apr. 29th, 2022 1.3.3 - Minor text revisions due to customer and developer feedback. EEW,
RKNH

May 30th, 2022 1.4.0 - Inclusion of ExecutionSummary, ExecutionStatistics messages,
due to customer and developer feedback.

EEW,
RKNH

Jun. 21st, 2022 1.4.1 - More clarifications and minor text revisions due to developer
feedback.

- Fixed message examples.

EEW,
RNKH

Jul. 7th, 2022 1.5.0 - New messages (TradeBust, ChannelReset).

- New fields: RptSeq, LastRptSeq, NumberOfTrades.

- Fields renamed: OrderID → SecondaryOrderID.

- New diagrams.

EEW,
RNKH

Sep. 21st, 2022 1.5.1 - StreamID field removed in all messages.

- TradeCondition field removed from TradeBust message.

- TradeDate field added to ExecutionStatistics message.

- Scenarios to describe the behavior of ExecutionSummary
message added.

- Scenarios that trigger publication of StreamReset, ChannelReset,
EmptyBook messages clarified.

- Scenario where snapshot is empty in the loop included.

- Fixed message examples.

- Description of 12-bit in TradeCondition field changed to: "Block
Book Trade = PT".

RNKH
, EEW

Nov. 17th, 2022 1.5.2 - Clarification on how to handle price bands information on page
74.

RNKH
, TV

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

8 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Jan. 6th, 2023 1.5.3 - Removed matchEventIndicator (tag 37035) field in the
ExecutionSummary message.

- mDEntrySize (tag 271) field in the DeleteOrder_MBO message is
now optional.

- mDEntrySize (tag 271) field in the AuctionImbalance message is
now optional.

- mDEntrySize (tag 271) and mDEntryPx (tag 270) fields in the
TheoreticalOpeningPrice message are now optional.

- priceBandType (tag 6939), priceLimitType (tag 1306) and
priceBandMidpointPriceType (tag 37008) fields in the PriceBand
message are now optional.

RNKH

Apr. 14th, 2023 1.5.4 - Adding minCrossQty (tag 35561) field in the SecurityDefinition
message.

- Adjusting composition of streams in Feed B (text and figures).

- More clarification on alignment and padding in SBE.

- Including a chapter for message versioning.

- Highlight the need to read block length from SBE Header for
seamless support for future additional optional fields at the end of
a message (message versioning).

- Correcting the declaration of exponent of Price type to -4 from -3.

- More details of behavior of iceberg orders in the market data
perspective.

- More clarification on the definition of a trading platform event.

RNKH

May. 3rd, 2023 1.5.5 - Guidelines is related to the version 1.5.5 of Binary UMDF
specification.

- Clarification for changing supported decimal to 8 for mDEntryPx
field in the ClosingPrice message and netChgPrevDay field.

- Statements in the “Implementing SBE” section adjusted for more
clarification.

RNKH

May 11th, 2023 1.5.6 - Clarification for the precision of the SendingTime field in the
Packet Header.

- Clarification for passive orders canceled by STP in a matching
event.

- Clarification of value of SequenceNumber field in Sequence
message.

RNKH

May 26th, 2023 1.5.6.1 - Fixed order of some messages in matching event in some
examples for better clarification.

- Disclaimer included for tracking book updates.

- Disclaimer included for the nature of UDP transmission (packet
loss and out-of-order).

RNKH

June, 9th, 2023 1.6.0 - Highlighting features in the UMDF FIX/FAST not supported in the
Binary UMDF.

- imbalanceCondition field (ImbalanceCondition type) used instead
of tradeCondition field in the AuctionImbalance message.

- tradeCondition type streamlined, non-regular trade types moved
to TrdSubType type.

- trdSubType field added to LastTradePrice, Trade and
ForwardTrade messages.

- Describing cases where LastRptSeq is not present in the
snapshot of a given instrument.

RNKH

June, 20th, 2023 1.6.0.1 - Completely revised section for schema extension mechanism to
support new templates and new versions of the schema.

RNKH

July, 20th, 2023 1.6.0.2 - Including description of the scenarios in which value of RptSeq
field is reset to one (sections 6.5.13 and 7.4.1).

- Including a table to summing up possible values for each trade
type that can have others trade condition and trade sub type
(section 12.3.3).

- Added scenarios when ExecutionSummary messages are/are not
published before Trade messages (section 12.1).

- Added which quantities can compose the hiddenQty field in the
ExecutionSummary message (section 12.1).

- Added details of conditions for MULTI_ASSET_TRADE and
LEG_TRADE values in the TrdSubType field in the Trade
message (section 12.3.2).

RNKH

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

9 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

November, 17th, 2023 1.7.0.0 - Sequence Version - Rolling over at the max value of 65534 not at
65535 (null value of the field). See section 6.5.5.1.

RNKH

December, 3rd, 2023 1.7.0.1 - Including a scenario of triggered stop orders aggressing several
orders in the section 12.1.3.

RNKH

April, 1st, 2024 1.8.0 - Following new messages are added: SettlementPrice (template
id=28) in section 12.11.3 and OpenInterest (template id=29) in
section 12.11.4.

- 109 - SWEEP_TRADE added to TrdSubType type for Sweep and
Cross support in sections 12.3.2 and 12.3.3.

- More clarification in the description of openCloseSettlFlag field in
the messages that uses this field in sections 12.9.1, 12.9.2,
12.9.3 and 12.11.3.

RNKH

May 15th, 2024 1.8.0.1 - Links to repository of schema files fixed at section 6.5.1. RNKH

May 17th, 2024 1.8.0.2 - Compatibility strategy to handle schema evolution section moved
from 6.3.1 to 5.10.

RNKH

August 9th, 2024 1.9.0 - Tag number for openCloseSettlFlag field fixed at section 12.11.3.

- Table of commonly combination of values for openCloseSettlFlag
and settlPriceType fields included at section 12.11.3.

- Implied book mechanism described in section 16.

- Minor adjustments in the order and trade messages to include
implied flag in the description of matchEventIndicator field
throughout the document.

RNKH

August 22th, 2024 1.9.0.1 - Least priority nature of the implied order described in a note in
section 16.

- Moment #4 to illustrate the least priority nature of the implied
order behavior included at the end of section 0.

RNKH

September 19th, 2024 1.9.0.2 - Complement the description of mDEntrySize field in the
DeleteOrder_MBO message: “Absent if the deletion is the result
of a matching event.”.

- Description of matchEventIndicator field equalized throughout the
document.

- Settlement prices and Open interest are removed from the
section that describes existing features in the FIX/FAST UMDF
not supported in the Binary UMDF.

- DAILY replaces SESSION in the table of regular schedule of
openCloseSettlFlag field in SettlementPrice message in section
12.11.3.

RNKH

October 15th, 2024 1.9.0.3 - Trade bust that involved an implied order also has the implied flag
set in matchEventIndicator field. See section 16.3.

- More clarification for definition of matchEventIndicator field in
each of message types that have this field.

- Clarification in the case of value of securityTradingStatus field is
null in snapshots in section 13.

RNKH

November 13th, 2024 1.9.0.4 - Description of events in the outrights that impacts the synthetic
implied order in section 16.

- Description of new behavior when the partial match occurs that
involves the synthetic implied order with examples to illustrate in
section 16.3.

RNKH

January 2nd, 2025 1.9.0.5 - More clarification on event behavior that involves implieds in
section 4.2.1.

- More clarification on synthetic implied order behavior in section
16.

- Fixed the action performed on the EmptyBook message in
section 11.

RNKH

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

10 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

2. Preface

This document outlines the B3 Unified Market Data Feed (UMDF) specification contemplating the

use of Simple Binary Encoding (SBE) over UDP multicast transport for Equities, Derivatives and

FX market segments on PUMA Trading System platform.

The implementation of SBE into UMDF was based on the version 1.0 of the FIX SBE. FIX SBE

targets high performance trading systems. It is optimized for low latency of encoding and decoding

while keeping bandwidth utilization small. For compatibility, it is intended to represent all FIX

semantics.

The encoding standard is complementary to other FIX standards for session protocol and

application-level behavior.

B3 provides this market data feed based on the Financial Information eXchange ("FIX") Protocol.

FIX is a technical specification for electronic communication of trade-related messages. It is an

open standard managed by members of FIX Protocol Limited (http://www.fixprotocol.org/). It is

assumed that the reader of this document has basic knowledge of the FIX protocol.

http://www.fixprotocol.org/

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

11 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

2.1 Abbreviations

Abbreviation Description

B3 B3 S.A. – Brasil, Bolsa, Balcão

TSG B3 Trading Support Group.

CFI Code Classification of Financial Instruments Code.

SBE Simple Binary Encoding

FIX Financial Information eXchange Protocol

IP Internet Protocol

TCP Transmission Control Protocol

UDP User Datagram protocol

EQT The Equities segment, previously available as BOVESPA signal.

DRV Derivatives and FX segment, previously available as BMF segment.

2.2 Glossary

Term Definition

Broker A broker is an individual or firm who acts as an intermediary between a
buyer and seller, usually charging a commission.

Brokerage Used interchangeably with broker when referring to a firm rather than an
individual. Also called brokerage house or brokerage firm.

Counterparty Party to a trade.

DMA Direct Market Access – functionality that allows end-customers, such as
hedge funds or investment banks, to directly access the exchange
electronically without the need to go over physical broker firm
infrastructure.

FIX Gateway Service that provides connectivity to third-party clients and brokerages
using the FIX protocol.

Instrument Financial capital in a readily tradable form.

Market Data A collective term for quotes, last sales, volume statistics and other
information used by the market to evaluate trading opportunities.

Matching The process by which two counterparties that have engaged in a trade
compare the settlement details of the offers provided by both. Matching is
done to verify all aspects of a trade and ensure that all parties agree on
the terms of the transaction.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

12 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Term Definition

IP Multicast Method of forwarding IP datagrams to a group of interested receivers.

Security A stock, bond or contract that has been authorized for trading on, and by,
a registered exchange. Each exchange has different criteria to determine
a security's eligibility for listing.

Vendor Institution that sells services to its clients. In the context of this document,
a vendor is an institution that sells access to market data feeds and order
management interfaces to an Exchange.

Snapshot The snapshot for one instrument comprises the state of each order book
(bids and asks), as well as some statistics (like High Price and Last Trade
Price) and the security status; it is valid as of the sequence number in the
Incremental Market Data feed (LastMsgSeqNumProcessed). It has only
the most recent statistics; previous values (like past trades) cannot be
recovered from the current value of the snapshot.

PUMA B3´s PUMA Trading System, that concentrates the trading for all
exchange products.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

13 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

3. Trading Hours

3.1 Trading Session Hours

For a list of FX, derivatives and equities trading hours and sessions, please visit:

http://www.b3.com.br/en_us/solutions/platforms/puma-trading-system/for-members-and-
traders/trading-hours/

3.2 Exchange Holidays

For a list of exchange holidays for the FX, derivatives, and equities segments, please visit:

http://www.b3.com.br/en_us/solutions/platforms/puma-trading-system/for-members-and-
traders/trading-calendar/holidays/

4. Features in Binary UMDF

Binary UMDF is the evolution of the current UMDF Market Data platform.

The main new features are:

• SBE (Simple Binary Encoding).

• Execution Summary message.

Updated features:

• Market By Order (MBO) – Order depth books are encoded in SBE.

• Market By Price (MBP) and Top Of Book (TOB) market depths are not available in SBE.

Please continue using the current UMDF Market Data platform if FAST encoding, MBP or

TOB market depths are features required.

Existing features in the FIX/FAST UMDF not supported in the Binary UMDF:

• Indexes and Security Lending information (from FIX/FAST Market Data channel 62 and

61 respectively).

• News from News agencies (from FIX/FAST Market Data channel 63).

• Notional volume (tag 269=B) statistics.

• Exercise and Blocking (E&B) Market Data information.

http://www.b3.com.br/en_us/solutions/platforms/puma-trading-system/for-members-and-traders/trading-hours/
http://www.b3.com.br/en_us/solutions/platforms/puma-trading-system/for-members-and-traders/trading-hours/
http://www.b3.com.br/en_us/solutions/platforms/puma-trading-system/for-members-and-traders/trading-calendar/holidays/
http://www.b3.com.br/en_us/solutions/platforms/puma-trading-system/for-members-and-traders/trading-calendar/holidays/

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

14 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

• TCP Recovery System (UMDF TCP Replayer).

• Market Data in FIX over TCP connection (UMDF TCP). There isn’t UMDF TCP in binary

format.

4.1 Simple Binary Encoding

Simple Binary Encoding (SBE) is a FIX standard for binary message encoding developed by the

High-Performance Working Group of the FIX Trading Community, which aimed to optimize

electronic exchange of financial data targeting high volume, low latency data dissemination.

Compared to FAST, it is simpler and faster to encode and decode, and not encumbered by any

patents.

4.2 Trading Platform Events

Each action taken on an order or a quote, results in a trading platform event. Binary UMDF only

supports order action-driven events.

The last message in a sequence of market data messages that belong to the same event is

marked with a 7th-bit (endOfEvent) in the tag 37035-matchEventIndicator.

 Order Action-driven Events

Entering an order that generates a book update market data message is a simple example of an

event.

Entering an order that matches against several resting orders is also an example of an event, and

it can generate several market data messages, like trades, volume, book, and statistic updates.

If a market state (group phase or security status change) impacts the order book state, related

messages such as order book deletion, resulting trades and statistics make up an event.

One special event to be highlighted is the one resulting in a trade of a strategy/spread that

involves one or more implied orders that results in trades and statistics changes of related outright

instruments because for each involved instruments in this transaction, the pair

ExecutionSummary/ExecutionStatistics messages are published. In this case, an event is

assigned for each of the instruments involved (the spread/strategy and its outrights).

Mass cancellation is another special event: all cancellations related to a single mass cancel sent

belong all to the same event, even involving different instruments, and the last DeleteOrder

message has the endOfEvent flag set.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

15 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 Market Data messages that do not belong to an Event

Statistics unrelated to order book updates, such as closing prices, price/quantity bands and group

phase and security status that do not trigger any changes in the book, do not make up an event

and all those messages have a 7th-bit set in the tag 37035-matchEventIndicator. This procedure

was made so that a client system can unequivocally determine the next event if it occurs after

those statistics are disseminated.

 Events that do not generate Market Data

Events like order rejections, entry of stop orders, cancellation of unelected stop orders, all of them

do not generate Market Data.

4.3 Tracking of Book Updates

Order books are sorted by position number: mDEntryPositionNo field (tag 290). Resting orders

are referred by their position numbers in decrement order from the top of the book.

Client systems shall manage their internal order-based book with the
position number (mDEntryPositionNo field) in each of order related
messages.

As there are several corner cases in the B3’s order-book management system, client
systems should only rely on position numbers in the order related messages
(Order_MBO, DeleteOrder_MBO and MassDeleteOrders_MBO) to manage their order
books. We do not guarantee order-book consistency if client system uses another
criteria to manage their order book!

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

16 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

5. Implementing SBE

5.1 SBE Design Principles

As mentioned previously, SBE is optimized for low latency of encoding and decoding, while

keeping bandwidth usage small. The main design principles are:

• Usage of native binary data types and simple types derived from native binaries (prices,

timestamps).

• Preference for fixed positions and fixed length fields, to streamline direct access to data.

• For compatibility, all FIX semantics are supported.

• Metadata information, like tag numbers and field separators, is not sent; it is available as

a message “template” (a collection of message schemas in an XML file).

• SBE encoding and decoding is much simpler and faster than FAST encoding and

decoding (no presence maps, no “dictionary contexts” containing previous values of tags

in messages or repeating groups, no variable-length integers, no special rules for missing

values etc.).

5.2 SBE Specification

B3 uses the version 1.0 of SBE, that can be accessed at:

https://www.fixtrading.org/packages/simple-binary-encoding-technical-proposal-final/ .

SBE specification version 1.0 uses the following fixed header that is very important for all

decoders to read and effectively use them to decode the following SBE body (see Schema

Extension Mechanism section):

Name Type Size

(bytes)

Description

blockLength uint16 2 The total space reserved for the root-level of the message not counting

any repeating groups or variable-length fields.

templateID uint16 2 Identifier of the message template.

schemaID uint16 2 Identifier of the message schema that contains the template.

schemaVersion uint16 2 The version of the message schema in which the message is defined.

5.3 SBE Field Order and Speed of Access

SBE templates are not expected to lay out the fields in the same order as the original FIX

Message; the order and alignment of the fields are important for fast access.

https://www.fixtrading.org/packages/simple-binary-encoding-technical-proposal-final/

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

17 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

SBE messages that have no repeating groups behave as fixed-length, fixed-position messages,

so they are very friendly to hardware processing (FPGA) and low-level languages (like C). In fact,

it just behaves like a simple struct in C language.

 Alignment and Padding

For speed of access, the most important fields are laid out in the limits of a 64-byte cache line

and aligned according to their sizes (8-byte fields start in an offset that is a multiple of 8, 4-byte

fields in an offset that’s a multiple of 4, and so on).

Alignment is especially important for speeding up FPGA processing. It is guaranteed by judicious

placement of the fields, and padding. (In SBE the alignment and padding are done by specifying

the field offsets explicitly (see more information at https://www.fixtrading.org/standards/sbe-

online/#message-body), and by carefully defining the block length of the message (block length

must be greater than or equal to the sum of the sizes of all fields in the message or group: see

more detail of padding at the end of a message at https://www.fixtrading.org/standards/sbe-

online/#padding-at-end-of-a-message-or-group). Normally we tried to avoid ‘dummy fields’ for

padding because it is harder to reclaim unused space later with updated specification. We

highlighted field offsets and block lengths that are different than the sum of size of the fields in

the Message Reference document for clarification.

 Similar Messages with Common Fields

Some messages have common fields (like securityID or matchEventIndicator) for almost all

Incremental Refresh messages). Such fields are placed in the same offset wherever possible.

5.4 Nested FIX Messages vs Flattened SBE Messages

Textual FIX Messages can be very lengthy, very nested, and carry lots of unrelated information

in a single message; FAST-encoded messages represent faithfully such FIX messages, so they

carry the same cruft as well.

For instance, a single textual FIX MarketDataIncrementalRefresh message (tag 35=X) (or its

equivalent FAST representation), that must be processed as soon as possible, because it

represents trades and order book updates, also carries statistical information that could be easily

inferred by the client, like session low and high price. The client must decode the entire message

and process all the MDEntries – they cannot be filtered before decoding.

This updated specification breaks the larger message (tag 35=X) into its components, or

MDEntries – each component represented by one SBE message. They occupy more space, but

the client can choose to decode and process some SBE messages according to its template ID.

https://www.fixtrading.org/standards/sbe-online/%23message-body
https://www.fixtrading.org/standards/sbe-online/%23message-body
https://www.fixtrading.org/standards/sbe-online/%23padding-at-end-of-a-message-or-group
https://www.fixtrading.org/standards/sbe-online/%23padding-at-end-of-a-message-or-group

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

18 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

SBE can represent FIX Repeating Groups, but its use was kept at a minimum, mainly in

instrument definition messages or some low-traffic messages.

For instance, let’s represent this simplified incremental (tag 35=X) message in SBE messages,

that represents the first trade of an instrument whose security id = 100988, in the day, followed

by the opening price, high price, low price, VWAP price and the matching (removal) of the resting

order of number 727042222275:

35=X|268=6|
 279=0|269=2|288=85|289=88|1003=10|271=1|270=65265|48=100988|
 279=0|269=4|270=65265|48=100988|
 279=0|269=7|270=65265|48=100988|
 279=0|269=8|270=65265|48=100988|
 279=0|269=9|270=65265|48=100988|
 279=2|269=0|48=100988|198=727042222275|290=1|

The corresponding SBE messages are (some fields are not shown):
Message Name FIX

equi-
valent

Template ID Msg Size Contents

ExecutionSummary 269=s 55 64 SecurityID=100988, LastPx=65265, FillQty=1,
CxlQty=0, TradedHiddenQty=0,
AggressorSide=2

Trade 269=2,
279=0

53 56 SecurityID=100988, MDEntryBuyer=85,
MDEntrySeller=88, TradeID=10,
MDEntrySize=1, MDEntryPx=65265

OpeningPrice 269=4,
279=0

15 40 SecurityID=100988, MDEntryPx=65265

HighPrice 269=7,
279=0

24 34 SecurityID=100988, MDEntryPx=65265

LowPrice 269=8,
279=0

25 34 SecurityID=100988, MDEntryPx=65265

DeleteOrder 269=0,
279=2

51 48 SecurityID=100988, MDEntryPositionNo=1,
SecondaryOrderID=727042222275,
MDEntryType=Bid

ExecutionStatistics 269=9 56 52 SecurityID=100988, TradeVolume=1,
VwapPx=65265,
MatchEventIndicator={EndOfEvent}

For example, an application can opt to skip “high price” and “low price” messages just by checking

their template IDs, that are 24 and 25. It is easier and faster than decoding the entire FAST

message and locating the MD entry with tag 269=7 and tag 269=8.

5.5 SBE, Optional Fields and Default Values, Empty Fields

Optional fields in SBE can hold ‘null values’, that an application can interpret as ‘absence of

contents (field is not set)’.

There is no ‘default values’ in SBE. Applications can replace ‘null values’ with ‘default values’ if

required but it is not in the protocol specification.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

19 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Optional fields in SBE do not save space at all. If a field is defined as an optional int32 (4 bytes),

it always occupies 4 bytes, even though the contents of the field are ‘null’.

For optional fields, there is a value that represents the ‘null’ value (the field is not set). It can be

specified in the declaration of their types.

If not explicitly defined in the type, the ‘null’ value is assumed as default for the primitive type: for

unsigned fields, it is the largest possible value (something like 0xFFFF… in hexadecimal); for

signed fields, it is the most negative value (something like 0x8000… in hexadecimal); for char

fields, it is always the binary value 0 (‘\0’).

For enumeration fields, it depends on the ‘encodingType’ attribute (for instance, for the LotType

enum, whose encoding type is ‘uint8’, the ‘null’ value is 255; for the SecurityUpdateAction enum,

whose encoding type is ‘char’, the ‘null’ value is NUL (‘\0’).

For some types, the encoding for the 'null value' is not the default, but it is specified in the

‘nullValue’ attribute for the type. For instance, the type of the 'enteringFirm' field (tag 37501) is

FirmOptional, whose ‘nullValue’ attribute is "0". For such field, the value "0" represents null, not

zero.

There are two types of strings in SBE: variable-length strings and fixed-length strings. Null string

and empty strings are encoded the same way. For variable-length strings, the field ‘length’ is 0

for null (empty) strings. For fixed-length strings, if the content is shorter than the specified length,

must be delimited by NUL (‘\0’) character.

From the SBE specification, the default values for null value are:

Primitive Type Value Decimal Hexadecimal

int8 −128 -128 0x80

uint8 255 255 0xFF

int16 −32768 -32768 0x8000

uint16 65535 65535 0xFFFF

int32 −231 -2147483648 0x80000000

uint32 232 − 1 4294967295 0xFFFFFFFF

int64 −263 -9223372036854775808 0x8000000000000000

uint64 264 − 1 18446744073709551615 0xFFFFFFFFFFFFFFFF

char 0 (𝐴𝑆𝐶𝐼𝐼 𝑁𝑈𝐿𝐿) 0 0x00 (‘\0’)

decimal

(int32 mantissa)
Mantissa: −231 -2147483648 0x80000000

decimal

(int64 mantissa)
Mantissa: −263 -9223372036854775808 0x8000000000000000

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

20 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 Decimal ‘null’ value

For instance, the type ‘Price’ is defined as a Decimal; the mantissa type is ‘int64’ and the exponent

is fixed as -4. A price like ‘+12.34’ is encoded as the long value ‘123400’ (it is 12.34 times 104, or

10000) but the null price (that can be found in market orders, that have no defined price) is

encoded as the special value 0x8000000000000000, or -9223372036854775808.

For some decimal fields, it is possible to have null values encoded as ‘0’ instead. Typically, they

are values that are strictly positive (cannot assume the value 0.0). Check the SBE template

searching for nullValue attribute in type declaration.

5.6 SBE Templates

SBE templates provide the rules for an SBE decoder to be able to properly decode market data

messages. SBE-encoded messages can only be interpreted correctly by using such templates.

The templates are all listed within a single XML file. The templates are subject to change by B3

as the system evolves and new functionality is added. When a change is done, B3 will notify

market participants in advance for appropriate development and/or testing efforts.

The version of the schema file is shown in the “version” attribute of the <sbe:messageSchema>

XML element. For example:

<sbe:messageSchema
 xmlns:ns2=”http://www.fixprotocol.org/ns/simple/1.0”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:sbe=”http://fixprotocol.io/2016/sbe”
 package=” b3.umdf.mbo.sbe”
 id=”2” version=”6”
 semanticVersion=”1.5.4”
 description=”B3 Market Data UMDF SBE messages”
 byteOrder=”littleEndian”
 xsi:schemaLocation=”http://fixprotocol.io/2016/sbe sbe.xsd”>

The modifications to the template file are documented using the “sinceVersion” attribute. In the

example below, a new value: “RecoveryInProcess” in the enumeration domain is only available

after the version is rolled out in the production environment:

<validValue name=”RecoveryInProcess” description=”Recovery In Process”

sinceVersion=”6”>6</validValue>

Please note that the templates for Market Data messages and for Order Entry messages are

listed in separate XML files and represent different schemas. Even though they could have

messages with the same IDs, the schema IDs are different, so a program can import both Market

Data and Order Entry templates without clashes.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

21 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

5.7 FIX Message and SBE Templates

To better reflect different usages and save space, different templates must be defined.

The use of different templates for different MDEntryType combinations helps to keep space usage

low, because a lot of fields are conditional in FIX (used for some MDEntryTypes but not for others)

and would take a lot of space in SBE messages if they were all included.

If the original FIX Message has fields that are not found in the SBE template, these fields are not

encoded or decoded.

5.8 Limiting the SBE message size

Unlike FIX/FAST messages (that have unlimited size), B3 limited the size of the SBE messages

to fit a single datagram (UDP packet) – 1400 bytes.

It helps applications to optimize message processing because they can allocate fixed space for

every message and easily reuse that space.

Applications do not need to collect the packets and consolidate them to decode messages. If a

packet is received and it is not corrupted, messages can always be successfully decoded from

this packet.

Limiting the message size is ideal for small messages, like incremental messages that update an

order book; but large messages, like News messages, which can have potentially unlimited size

but fortunately have low traffic, are handled in a special way. These large messages are broken

into “parts” (smaller messages that have two additional fields: partCount and partNumber). The

client application can collect such messages (partNumber = 1 to partCount) and consolidate fields

of them (for instance, the News message has a ‘text’ field (tag 58) that must be consolidated).

5.9 Schema Extension Mechanism

 Objective

It is not always practical to update all message publishers and consumers simultaneously. Within

certain constraints, messages and repeating groups can be extended in a controlled way.

Consumers using an older version of a schema should be compatible if interpretation of added

fields or messages is not required for business processing.

Message templates and repeating groups may be extended with new fields. However, the

extension mechanism does not support extension of composite types that back existing fields.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

22 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

This specification only details compatibility at the presentation layer. It does not relieve application

developers of any responsibility for carefully planning a migration strategy and for handling

exceptions at the application layer.

5.9.1.1 Constraints

Compatibility is only ensured under these conditions:

• Fields may be added to either the root of a message or to a repeating group, but in each

case, they must be appended to end of a block.

• Inserting a new field in a reserved space not used before.

• Existing fields cannot change data type or move within a message.

• Message and repeating group byte alignment may not change.

• A repeating group may be added after existing groups at the root level or nested within

another repeating group.

• A variable-length data field may be added after existing variable-length data at the root

level or within a repeating group.

• Message header encoding cannot change.

• Adding a new choice for an enumeration or a set (the encoding type must remain the

same).

• Adding a constant field at any position in the message.

• In general, metadata changes such as name or description corrections do not break

compatibility so long as wire format does not change.

Changes that break those constraints require consumers to update to the current schema used

by publishers. A message template that has changed in an incompatible way must be assigned

a new template “id” attribute.

 Message schema features for extension

5.9.2.1 Schema version

The <messageSchema> root element contains a version number attribute. Each time a message

schema is changed, the version number is incremented.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

23 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Version applies to the schema as a whole, not to individual elements. Version is sent in the

message header so the consumer can determine which version of the message schema was

used to encode the message.

5.9.2.2 Since version

When a new field, enumeration value, group or message is added to a message schema, the

extension may be documented by adding a sinceVersion attribute to the element. The

sinceVersion attribute tells in which schema version the element was added. This attribute

remains the same for that element for the lifetime of the schema. This attribute is for

documentation purposes only, it is not sent on the wire.

Over time, multiple extensions may be added to a message schema. New fields must be

appended following earlier extensions. By documenting when each element was added, it

possible to verify that extensions were appended in proper order.

5.9.2.3 Block length

The length of the root level of the message may optionally be documented on a <message>

element in the schema using the blockLength attribute. If not set in the schema, block length of

the message root is the sum of its field lengths. Whether it is set in the schema or not, the block

length is sent on the wire to consumers.

Likewise, a repeating group has a blockLength attribute to tell how much space is reserved for

group entries, and the value is sent on the wire. It is encoded in the schema as part of the

numInGroup field encoding.

5.9.2.4 Deprecated elements

A message schema may document obsolete elements, such as messages, fields, and valid

values of enumerations with deprecated attribute. Updated applications should not publish

deprecated messages or values, but declarations may remain in the message schema during a

staged migration to replacement message layouts.

 Wire format features for extension

5.9.3.1 Block size

The length of the root level of the message is sent on the wire in the SBE message header.

Therefore, if new fields were appended in a later version of the schema, the consumer would still

know how many octets to consume to find the next message element, such as repeating group

or variable-length data field. Without the current schema version, the consumer cannot interpret

the new fields, but it does not break parsing of earlier fields.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

24 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Likewise, block size of a repeating group is conveyed in the numInGroup encoding.

5.9.3.2 Number of repeating groups and variable data

Message headers and repeating group dimensions carry a count of the number of repeating

groups and a count of variable-length data fields on the wire. This supports a walk by a decoder

of all the elements of a message, even when the decoder was built with an older version of a

schema. As for added fixed-length fields, new repeating groups cannot be interpreted by the

decoder, but it still can process the ones it knows, and it can correctly reach the end of a message.

5.10 Compatibility strategy to handle schema evolution

It is necessary to state that B3 will make any market data schema updates in tranches fashion

following previously released plan. So, it's important to notice that during the roll-out period, not

all channels will be publishing in the same schema version.

Basically, there are two strategies that B3 will adopt, based on the complexity of the changes. But

to be make easier for client application be aware of changes, for every change to the message

schema, schema version will be increased, so the decoder can handle them from reading the

SBE header before starting to decode the body of the message.

 Increment schema version and changes are made for some templates

This strategy is normally adopted for incremental changes that does not break template backward

compatibility. Normally the type of changes that are backward compatible includes:

• Adding new optional fields at the end of root block or at the end of existing repeating

group.

• Adding new optional fields in available unused spaces reserved previously.

• New repeating group block is added at the end of existing repeating group block but there

is no variable length data after that.

• New variable length data is added at the end of the message.

• New values are added to existing enumeration types that has already been used by some

existing message.

• New choices in unused bits are added to existing sets.

New fields, values and choices need to include “sinceVersion” attribute so modified decoders can

support extensions smoothly. “Version” attribute in the root node of the “messageSchema” needs

to be incremented as well so the SBE header of received message will have the updated schema

version.

For clarification, we are adding this example: client application is adapted to process version “7”

of trade message that includes a new optional field named trdSubType.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

25 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

If the received version is equal to the decoder’s version, then all fields known to the decoder may

be parsed, and no further analysis is required. trdSubType field can be parsed, and if the business

logic is correctly implemented, it can know what type of non-regular trade the trade is.

If the received version is less than the decoder’s version (that is, the producer’s encoder is older

than the consumer’s decoder from market data channel that has not updated yet), then only the

fields of the old version may be parsed. This information is available through metadata as

“sinceVersion” attribute of an added field. If “sinceVersion” is greater than received schema

version, then the field is not available. How a decoder signals an application that a field is

unavailable is an implementation detail. One strategy is for an application to provide a default

value for unavailable fields.

If the received version is greater than the decoder’s version (that is, the producer’s encoder is

newer than the consumer’s decoder), then all fields known to the decoder may be parsed but it

will be unable to parse newly added fields. In most cases, the state of the client application

probably will be in consistent state but without additional information provided by the updated

version.

 Schema version is incremented, new template is created for existing
message

This strategy is normally adopted for disruption changes that breaks template backward

compatibility. B3 will mark the old template as deprecated using “deprecated” attribute.

Because B3 will make any market data schema updates in tranches of channels, B3 strongly

recommended that client applications support decoding/processing both templates: the old and

the new one and process them accordingly.

To illustrate this strategy, we are giving this example: client application is adapted to process both

templates: the new one (58) and also the old one (53). The new template “id” = 58 of trade

message includes a new field named trdSubType but removes the tradeCondition. The older

template “id” = 53 of trade message does not include the optional trdSubType field but has the

tradeCondition field.

If the client application receives a trade message with the new template “id” (58) then all fields

known to the decoder may be parsed, and no further analysis is required. trdSubType field can

be parsed, and if the business logic is correctly implemented, it can know what type of trade from

this field. tradeCondition field is not parsed.

If the received message has old template “id” (53), that is, the producer’s encoder is publishing

older template “id” than the consumer’s decoder expected – market data channel that has not

updated yet, then only the fields of the old version of the template may be parsed (in this example,

all fields including tradeCondition field but not trdSubType field). How an application can handle

new/modified fields that are unavailable in the old template and present in the newer template is

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

26 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

an implementation detail. One strategy is for an application to provide a default value for

unavailable/modified fields.

If the received version is greater than the decoder’s version (that is, the producer’s encoder is

newer than the consumer’s decoder) for migrated market data channel, client application will not

receive any messages with the old template “id” (in this example, template “id” = 53) and will

receive a message with the newer template “id” (58) that does not know how to process them and

possibly will be in inconsistent state.

Client systems must process SBE Header for each message.

It is extremely important that client applications that consume market data messages in

SBE format must process schemaVersion and blockLength fields in the SBE Header

instead of assuming them from the template definition because additional compatible

versions of the same message (same template “id”) will likely have different schema

version and greater block length to accommodate new optional fields. If the message

has repeating groups or variable length data, these structures will be shifted to the right

according to the block length of new optional fields added to the end of the root-level

block.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

27 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

6. System Architecture

The Binary UMDF platform will be available alongside the current FIX/FAST UMDF feed.

There are two principal aspects on this market data architecture: the concept of a “market data

channel” – which defines how the feed is logically distributed according to a set of instruments

and level of information of the book; and the “SBE engagement rules” – which define the transport

of the information and how the client system should synchronize the data provided into the market

data channels.

6.1 Market Data Channel

Binary UMDF is based on UDP Multicast to disseminate B3’s market data information such as

books, trades and statistics. A channel is a logical group of multicast IP addresses, UDP ports.

Every channel provides market data of a list of instruments (or security list) that have common

characteristics, as determined by the exchange.

A channel is logically broken up into 3 streams: an “Incremental Stream”, an “Instrument Definition

Stream” and a “Snapshot Recovery Stream”.

There is a main feed (Feed A) for every stream. A secondary feed (Feed B) only has the

incremental stream, and the purpose of this feed is to mitigate the packet lost if properly listening

on both feeds (A and B) simultaneously and processes the first received packet, discarding the

second one.

The UDP protocol itself trades reliability of performance and does not
guarantee the datagrams delivery.

Therefore, the packet could be lost during the network transmission.

Even if the packet reaches the network node, it does not always mean that the
application receives it because during processing the received packet goes through
several levels, on each level there could be a loss.

Out-of-order packets can also be caused by UDP traffic. This issue occurs primarily
due to stateless connections and the lack of flow control mechanisms that exist within
UDP protocol.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

28 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

For contingency purposes, B3 provides a feed (Feed C) that is generated at its contingency site

(DR – Disaster Recovery).

The secondary feed contains the exact same data that is sent over the primary feed, however

with different connectivity information (different UDP multicast addresses and ports) and path (to

mitigate network outage and instability).

B3 strongly suggest that customers sign up to receive both feeds (feed A and feed B) and process

the first datagram received, because incremental messages that can be lost or out of sequence

can be retrieved by the nature of UDP transmission.

6.2 Incremental Stream

Used to disseminate B3 incremental market data and other real time data such as news,

instrument updates, instrument status using SBE encoded messages.

If no data is sent through the incremental stream for more than 1 (one) second (can be changed

after notifications from TSG), B3 will issue a Sequence message for maintaining connectivity. If

client systems do not receive any messages within 3 consecutive heartbeat intervals, the

incremental stream should be considered not functional, and the book state should be considered

inconsistent.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

29 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

6.3 Snapshot Recovery Stream

Snapshot recovery is used to disseminate B3 market data snapshot message for instruments

belonging to that channel.

The snapshot for one instrument comprises the state of each book (bids and asks), as well as

some statistics (like High Price and Last Trade Price) and the security status; it is valid as of the

sequence number in the Incremental Market Data feed (lastMsgSeqNumProcessed). It has only

the most recent statistics; previous values (like past trades) cannot be recovered from the current

value of the snapshot. It is transmitted using several SBE messages that can occupy one or more

packets. It also keeps the last value of rptSeq (as lastRptSeq), that represents the sequence

number per instrument.

The market data snapshot messages are replayed at a specific rate and should be used as the

primary source for all book synchronization.

Once the books are synchronized and the client starts using only the incremental stream, the

client should unjoin the stream as it would take up unnecessary bandwidth.

NOTE

The number of order book snapshots that is sent in the snapshot recovery
stream in one loop could be less than the number of instruments to the related
channel. Client systems must handle instruments with no snapshots as having
empty order books and no statistical data before applying incremental data.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

30 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

6.4 Instrument Definition Stream

The instrument definition stream is used to recover the list of all instruments that is currently

assigned to that channel. The list is replayed periodically and starts over once the last instrument

definition message is received.

6.5 Engagement Rules

This section contains an overview of engagement architecture for receiving the SBE market data

feed.

 Latest SBE Templates

SBE messages are not self-describing, and all metadata (message schemas) must be previously

fetched before decoding.

Schema files are available at the B3 web site, at the following addresses:

In Portuguese: https://www.b3.com.br/pt_br/solucoes/plataformas/puma-trading-system/para-

desenvolvedores-e-vendors/umdf-binario/

In English: https://www.b3.com.br/en_us/solutions/platforms/puma-trading-system/for-

developers-and-vendors/binary-umdf/

 Network Configuration

B3 will provide clients with the necessary network configuration information to allow them to

receive all market data channels.

See the documents: Market Data Channels Definition or contact the TSG for the list of certification

and production environments (multicast channels definitions).

NOTE

Each SecurityDefinition message conveys the definition of a single instrument.

Client systems must be prepared for template changes.

If schema evolution is required, B3 will release an updated version of the schema

template file, with the new or updated templates.

https://www.b3.com.br/pt_br/solucoes/plataformas/puma-trading-system/para-desenvolvedores-e-vendors/umdf-binario/
https://www.b3.com.br/pt_br/solucoes/plataformas/puma-trading-system/para-desenvolvedores-e-vendors/umdf-binario/
https://www.b3.com.br/en_us/solutions/platforms/puma-trading-system/for-developers-and-vendors/binary-umdf/
https://www.b3.com.br/en_us/solutions/platforms/puma-trading-system/for-developers-and-vendors/binary-umdf/

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

31 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Please note that FIX/SBE multicast data is available through the RCB (Rede de Comunicação

B3, or B3 Communications Network).

 Market Data Network Contingency Feed

B3 offers to all customers (RCB and Colocation) the ability to receive a network contingency feeds

that passing on different internal route to strengthen stability and increase network fault tolerance.

The following diagram illustrates the primary and backup feeds distribution:

B3 suggests customers to sign up for both feeds, to increase stability.

There is a third feed intended to be used for disaster recovery purposes, called Feed C; clients

are advised to sign up for the Feed C as well.

RCB / Co-location LAN

Client systems

Core exchange market data feed

Feed A Feed B

Market
data feed

Market
data feed

NOTE

SBE Multicast Data is available through the RCB and inside B3’s datacenter for

co-location customers.

NOTE

On Binary UMDF, both Incremental feeds (A and B) share the exact same messages,
so customers are encouraged to connect to both feeds simultaneously for better
reliability and to handle packet losses efficiently.

Derivatives/FX

Market data

Equities

Market data

Derivatives/FX

Market data

Equities

Market data

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

32 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 Message Framing

All Market Data messages will use the SBE Format (Simple Binary Encoding), in little-endian

format.

They need to be framed because the main network transport is UDP, that is datagram-based

(data is sent in packets). The same framing will be used for stream-based protocols, like TCP

(FIX Sessions).

To make the decoding easier and more amenable to hardware acceleration (like FPGAs), all

messages must be smaller than a packet and kept as simple as possible.

The packet size will be smaller or equal to 1400 bytes, to be compatible with most VPNs.

 Packet Structure

The Packet structure described below is applied for all 3 streams: incremental, instrument

definition and snapshot streams.

6.5.5.1 Packet Header

Each packet (datagram) has one Packet Header, and one or more messages inside. The Packet

Header is in little-endian format (the least significant values come first). The total size is 16 bytes.

The figure below shows a packet with two messages:

One Packet Header has the following fields:
Name Type Size

(bytes)
Description

ChannelID uint8 1 Channel identification.

Reserved uint8 1 Reserved.

SequenceVersion uint16 2 Packet Sequence Version.
For incremental stream, it starts with 1 at the rollout in the production
environment and incremented on weekly basis or in case of failover
events.
For instrument definition and snapshot streams, its value changes for
each new loop.
its value will be rolled back to 1 if incremented beyond 65534.

SequenceNumber uint32 4 Packet Sequence Number. Always incremented by one in the same
channel and same SequenceVersion.

SendingTime uint64 8 UTC date and time of message transmission, in nanoseconds since
Unix epoch (Jan 1st., 1970), with microsecond-level precision*.

* - Precision is the fineness to which an event can be measured repeatably and reliably.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

33 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

6.5.5.2 Example

 +---+
 | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+---+----------------+
|00000000| 37 00 01 00 b1 68 de 3a 00 c8 98 65 f4 ac eb 15 |7....h.:...e....|
+--------+---+----------------+

Offset Length Field Hex bytes Encoded value

0000 1 ChannelID 37 55 (Channel #55)

0001 1 Reserved 00 -

0002 2 SequenceVersion 01 00 1

0004 4 SequenceNumber b1 68 de 3a 0x3ade68b1 = 987654321

0008 8 SendingTime 00 c8 98 65 f4 ac eb 15 0x15ebacf46598c800 =

1579546260000000000 = Jan 20,

2020 18:51:00.000000000

6.5.5.3 Message Header

Each message in the packet starts with a Message Header that consists of the Framing Header,

which is a compact form of SOFH – Simple Open Framing Header, and the SBE Message

Encoding Header.

The message header is in little-endian format (the least significant values come first). The total

size is 12 bytes.

One Message Header has the following fields:
Name Type Size

(bytes)

Description

(Framing Header)

messageLength uint16 2 Overall message length including headers to support framing.

encodingType uint16 2 Identifier of the encoding used in the message payload (always “50 EB –

SBE 1.0 Little-Endian)

(SBE Message Header)

blockLength uint16 2 The total space reserved for the root-level of the message not counting

any repeating groups or variable-length fields.

templateID uint16 2 Identifier of the message template.

schemaID uint16 2 Identifier of the message schema that contains the template.

schemaVersion uint16 2 The version of the message schema in which the message is defined.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

34 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

6.5.5.4 Example – A packet with a single message

 +---+
 | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+---+----------------+
00000000	37 00 01 00 b1 68 de 3a 00 c8 98 65 f4 ac eb 15	7....h.:...e....
00000010	48 00 50 eb 3c 00 32 00 02 00 03 00 a4 92 78 48	H.P.<.2.......xH
00000020	17 00 00 00 00 c8 98 65 f4 ac eb 15 20 00 31 45e.... .1E
00000030	64 00 00 00 a8 5e bc 00 00 00 00 00 64 00 00 00	d....^......d...
00000040	00 00 00 00 d1 2f 01 00 00 00 00 00 00 00 00 00/..........
00000050	00 00 00 00 d1 e1 01 00
+--------+---+----------------+

Offset Length Field Hex bytes Decoded value

0000 … 000F 16 Packet Header See above

0010 2 messageLength 48 00 0x0048 = 72

0012 2 encodingType 50 eb 0xEB50 = SBE 1.0 Little-Endian

0014 2 blockLength 3C 00 0x003C = 60

0016 2 templateID 32 00 0x0032 = 50 (Order_50)

0018 2 schemaID 02 00 0x0002 = 2

001A 2 schemaVersion 03 00 0x0003 = 3

001C … 0057 60 SBE Message Body a4 92 78…

6.5.5.5 A packet with two SBE messages

This is the binary representation of a packet containing two SBE messages (an Order and a

Trade):

 +---+
 | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+---+----------------+
00000000	37 00 01 00 b1 68 de 3a 00 c8 98 65 f4 ac eb 15	7....h.:...e....
00000010	48 00 50 eb 3c 00 32 00 02 00 03 00 a4 92 78 48	H.P.<.2.......xH
00000020	17 00 00 00 00 00 00 00 00 00 00 00 80 01 31 451E
00000030	0a 00 00 00 00 61 bc 00 00 00 00 00 78 e0 01 00a......x...
00000040	00 00 00 00 38 56 4c 05 00 00 00 00 00 c8 98 658VL........e
00000050	f4 ac eb 15 39 30 00 00 40 00 50 eb 34 00 35 0090..@.P.4.5.
00000060	02 00 03 00 a4 92 78 48 17 00 00 00 00 c8 98 65xH.......e
00000070	f4 ac eb 15 80 00 01 45 d0 07 00 00 00 61 bc 00E.....a..
00000080	00 00 00 00 00 00 00 00 00 00 00 00 81 e3 01 00
00000090	39 30 00 00 04 00 74 4a	90....tJ
+--------+---+----------------+

Offset Length Field Hex bytes Decoded value

0000 …

000F

16 Packet Header See above

0010 2 messageLength 48 00 0x0048 = 72

0012 2 encodingType 50 eb 0xEB50 = SBE 1.0 Little-Endian

0014 2 blockLength 3C 00 0x003C = 60

0016 2 templateID 32 00 0x0032 = 50 (Order_50)

0018 2 schemaID 02 00 0x0002 = 2

001A 2 schemaVersion 03 00 0x0003 = 3

001C …

0053

60 SBE Message Body a4 92 78…

0058 2 messageLength 40 00 0x0040 = 64

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

35 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Offset Length Field Hex bytes Decoded value

005A 2 encodingType 50 eb 0xEB50 = SBE 1.0 Little-Endian

005C 2 blockLength 34 00 0x0034 = 52

005E 2 templateID 35 00 0x0035 = 53 (Trade_53)

0060 2 schemaID 02 00 0x0002 = 2

0062 2 schemaVersion 03 00 0x0003 = 3

0064 …

0097

52 SBE Message Body a4 92 78…

 Examples of SBE Message Encoding

Please refer to the FIX SBE Technical Specification 1.0 with errata (November 2020).

It is available at:

https://www.fixtrading.org/packages/simple-binary-encoding-technical-specification-final/.

A few samples will be given below to provide a better understanding of the specification.

6.5.6.1 Message with no repeating groups

Encode a Sequence message whose template id is 2, schema id is 2, schema version is 0, and

the value of nextSeqNo field is 27182818.

The SBE definition of the Sequence message is:

<sbe:message name="Sequence_2" id="2" semanticType="0">
 <field name="messageType" id="35" type="MessageType" presence="constant"
valueRef="MessageType.Sequence"/>
 <field name="applVerID" id="1128" type="ApplVerID" presence="constant"
valueRef="ApplVerID.FIX50SP2"/>
 <field name="nextSeqNo" id="35526" type="SeqNum"/>
</sbe:message>

Encoding the SBE Message: the first and second fields are constant (messageType and

applVerID), so only the third field (nextSeqNo) must be encoded. Its type is ‘SeqNum’, that is an

alias for “unsigned integer with 32 bits’.

27182818 (decimal) = 019EC6E2 (hex) = E2 C6 9E 01 (reverse the order of the bytes, because

it is little-endian)

The message payload has just 4 bytes: E2 C6 9E 01.

The whole message is encoded as

10 00 50 EB 04 00 02 00 02 00 00 00 E2 C6 9E 01

https://www.fixtrading.org/packages/simple-binary-encoding-technical-specification-final/

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

36 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

As seen in the table below:

Offset Field Value (decimal) Value (Hexadecimal) Value (Bytes)

00 messageLength 16 0010 10 00

02 encodingType 60240 (0xEB50) 50 EB

04 blockLength 4 0004 04 00

06 templateID 2 0002 02 00

08 schemaID 2 0002 02 00

0A schemaVersion 0 0000 00 00

0C nextSeqNo 27182818 019EC6E2 E2 C6 9E 01

6.5.6.2 Example – Message with one repeating group level

Let us encode a simpler version of the SecurityDefinition message. SecurityDefinition messages

are very lengthy. A sample template for a special case will be shown instead. It could be used for

encoding security definitions for index instruments.

Let us say that this SecurityDefinitionForIndexInstruments message whose template id is 777,

schema id is 1, schema version is 0, is defined by:

<sbe:message name=”SecurityDefinitionForIndexInstruments” id=”777”>
 <field name=”messageType” id=”35” type=”MessageType” presence=”constant”
valueRef=”MessageType.SecurityDefinition”/>
 <field name=”symbol” id=”55” type=”Symbol6”/>
 <group name=”noUnderlyings” id=”711” dimensionType=”GroupSizeEncoding”>
 <field name=”underlyingSymbol” id=”311” type=”Symbol6”/>
 <field name=”indexPct” id=”6919” type=”Percentage8”/>
 <field name=”indexTheoreticalQty” id=”37021” type=”Quantity”/>
 </group>
</sbe:message>

Where “Symbol6” is a 6-character string, defined by:

<type name=”Symbol6” primitiveType=”char” length=”6” characterEncoding=”ASCII”
semanticType=”String” description=”Ticker symbol” />

If the symbol has less than 6 characters, it is padded with binary zeros. For instance: “B3SA3” (a

5-character symbol) is represented by the bytes 42 33 53 41 33 00.

 “Percentage8” is a decimal fixed-point integer, defined by:

<composite name=”Percentage8” semanticType=”Percentage” description=”Percentage with constant
exponent -8”>
 <type name=”mantissa” description=”mantissa” presence=”optional” primitiveType=”int64”/>
 <type name=”exponent” description=”exponent” presence=”constant” primitiveType=”int8”>-8</type>

</composite>

The value “-8” tells us to get the value (mantissa) and divide it by 1 followed by 8 zeros (or multiply

by 10−8).

“Quantity” is a 4-byte integer, defined by

<type name=”Quantity” primitiveType=”uint32” semanticType=”Qty” description=”Quantity in

order/trade”/>

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

37 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

And “GroupSizeEncoding” is a type used for declaring repeating groups, defined by:

<composite name=”GroupSizeEncoding” description=”Repeating group dimensions”>
 <type name=”blockLength” primitiveType=”uint16”/>
 <type name=”numInGroup” primitiveType=”uint8” semanticType=”NumInGroup”/>
</composite>

The contents of the message are:

55=IBOV, 711=2,

 311=PETR4, 6919=1.10863820, 37021=51860760,

 311=VALE5, 6919=0.4702920, 37021=19792285

The encoded message is:

39 00 50 EB 06 00 09 03 01 00 00 00 49 42 4F 56 00 00 12 00 02 50 45 54 52 34

00 CC A5 9B 06 00 00 00 00 18 55 17 03 56 41 4C 45 35 00 D0 9B CD 02 00 00 00

00 9D 01 2E 01

Let us analyze it:

Field Value (Bytes) Decoded value

 messageLength 39 00 57

 encodingType 50 EB 60240

 blockLength 06 00 6

 templateID 09 03 777

 schemaID 01 00 1

 schemaVersion 00 00 0

 symbol (55) 49 42 4F 56 00 00 “IBOV”

 noUnderlyings (711):

GroupSizeEncoding.blockLength

12 00 18

 noUnderlyings (711):

GroupSizeEncoding.numInGroup

02 2

1 underlyingSymbol (311) 50 45 54 52 34 00 “PETR4”

1 indexPct (6919) CC A5 9B 06 00 00 00 00 1.10863820 (00 00 00 00 06 9B A5 CC =

110,863,820; divide by 100,000,000)

1 indexTheoreticalQty (37021) 18 55 17 03 51,860,760 (03 17 55 18 = 51860760)

2 underlyingSymbol (311) 56 41 4C 45 35 00 “VALE5”

2 indexPct (6919) D0 9B CD 02 00 00 00

00

0.4702920 (00 00 00 00 02 CD 9B D0 =

47,029,200; divide by 10000000)

2 indexTheoreticalQty (37021) 9D 01 2E 01 19,792,285 (01 2E 01 9D = 19792285)

There are two blockLength fields in the message above: the first one appears in the SBE Message

Encoding Header and tells us how many bytes are reserved for the “root level” of the message.

The definition above tells that the root level has only the tag 55-symbol and the field occupies just

6 characters, so the value to use is 6 (06 00).

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

38 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

The second one (noUnderlyings.blockLength) tells us how many bytes are allocated for the fixed

part of each repeating group. The definition above tells that each repeating group has the

following fields: tag 311-underlyingSymbol, whose size is 6, tag 6919-indexPct, whose size is 8,

and tag 37021-indexTheoreticalQty, whose size is 4. Therefore, the total size is 6 + 8 + 4 = 18,

or 12 00.

 Messages, Packets and Events

A packet can contain a single message, or several messages. To keep bandwidth low, the system

can choose to send several messages in a single packet.

One event can generate a single message, or a series of messages.

It can extend for several packets.

The packet can contain messages from several distinct events (as described in chapter 4.2).

 Instrument Definition Stream Processing

The instrument definition stream replays the list of instruments of a specific channel at an

exchange-defined rate. To correctly process the full list of instruments for that channel, client

systems must join the instrument definition stream.

Client systems should begin recovering messages when SequenceNumber field (in the Packet

Header) is 1 and use the tag 393-TotNoRelatedSym (in the SecurityDefinition message) to

retrieve the complete set of Security Definitions. TotNoRelatedSym field contains the number of

SecurityDefinition messages to be published in the current loop.

Every loop ends with a SequenceReset message. The next message will be published with new

SequenceVersion and SequenceNumber = 1.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

39 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

One instrument definition is defined by a single SecurityDefinition message. A packet can have

several SecurityDefinition messages.

Deleted and expired instruments are not sent over the instrument definition stream; the application

must process the SecurityDefinition message sent over the incremental stream.

The following diagram illustrates correct client system processing of the instrument definition

stream:

The packets and messages mentioned above are:

B3 will start issuing instrument definition messages in the instrument definition stream using the

schedule described in the table below (all times are local unless stated otherwise):

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

40 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Trading
platform

Segment Schedule

PUMA Equities Not restarted daily, brought down between Fri 22:00 and Sun 12:00 (local time)

PUMA Derivatives/FX Not restarted daily, brought down between Fri 22:00 and Sun 12:00 (local time)

The other feeds (incremental and snapshot recovery) are also activated at this time, but

messages are only sent as they become available. In general, for PUMA Trading System,

customers may connect every day or keep connected through the week. However, B3

recommends that customers remain disconnected during the weekends, unless when

participating in scheduled Simulated Trading Sessions (a.k.a. mock tests).

 Initial Market Data Synchronization Procedure

The process described below details the activities need to ensure a proper synchronization is

complete, therefore all necessary market data is received by the client system. It is advisable to

retrieve from B3’s website the latest configuration parameters and template files or contact the

TSG for more information.

1. Join the multicast address/UDP port of the incremental stream and start receiving the

market data incremental messages. Queue them.

2. Join the multicast address/UDP port of the security definition stream until all

instruments have been received (monitor the tag 393- TotNoRelatedSym).

3. Unjoin the security definition stream, to avoid consuming unnecessary bandwidth.

4. Simultaneously with receiving security definition stream, join the multicast

address/UDP port of the snapshot recovery stream until all snapshot messages have

been received: monitor the Packet Header field SequenceNumber, whose value is

cyclical, and the tag 911-TotNumReports = total number of snapshots in the current

loop. Client systems could receive and queue SBE SnapshotFullRefresh related

messages until total number of snapshots is equal to the value of TotNumReports

field (tag 911) of the last snapshot message received and the older incremental data

queued is greater than the next sequence of the lowest value of tag 369-

LastMsgSeqNumProcessed of all snapshots stored. They also need to ensure that

no packets are missed in the process: check the sequence numbers of those packets

and make sure you received the packet that contains SequenceReset message (the

last packet of the given loop).

5. Unjoin the snapshot recovery stream, to avoid consuming unnecessary bandwidth.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

41 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

6. Start by removing from the queue the incremental stream messages applying over

related snapshots until consuming all the queued messages: discard queued

messages from the incremental stream until Packet Header field SequenceNumber

in the message has the same value as tag 369-LastMsgSeqNumProcessed in the

snapshot for each instrument in the channel. The discarded messages contain

information that was already included in the related snapshot message. Do not

discard messages of types: SecurityDefinition and News, as they are not

reflected on the received snapshot.

7. Start normal processing with incremental messages.

The following diagram illustrates the graphical representation of the steps listed above.

Figure 5.6 – Procedures for initial book synchronization.

• Queue messages

Join Incremental Stream

• Build instrument table

• Read until 393 - TotNoRelatedSym

• Unjoin Instrument Definition Stream

Join Instrument Definition Stream

• Build books for instruments

• Read until 911 - TotNumReports

• Ensure all packets are received

• Unjoin Market Recovery Steam

Join Market Recovery Stream

• Discard SBE Incremental Refresh messages where packet header
SequenceNumber ≤ 369 - LastMsgSeqNumProcessed

• Process remaining queued IncrementalRefresh messages

• Process SecurityList, SecurityStatus and News messages

• Application ready

Apply queued incremental messages

NOTE

One loop in the snapshot recovery stream can report a TotNumReports (tag 911)

number that is different from the number of instruments assigned to the market data

channel. Instruments with no snapshot data can be considered as having empty

books.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

42 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 Start of Day “Heartbeats” – Sequence messages

To provide clients with connectivity testing before the actual streams are activated, B3 will issue

Sequence messages every 1 (one) second (this interval is configurable. If client systems do not

receive any messages within an interval equivalent to 3 “Sequence” messages in a row, it should

consider that the multicast is not active. Note that Sequence message is applicable to all three

UDP multicast streams.

Sequence messages come in packets whose SequenceNumber field is 0; the NextSeqNo field

(tag 35526) tells what the sequence number for the first business message that is will arrive in

this stream. For instance, let us say that the last message in the last trading day has

SequenceNumber = 1235; the system is inactive until morning and sends periodically “Sequence”

messages with NextSeqNo field = 1236. The first message in the morning will have

SequenceNumber = 1236.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

43 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 Stream Reset Message

Client systems should be able to handle the SequenceReset message, which is sent by B3 in the

incremental stream of any market data channel.

This message is issued in case of a severe failure in the exchange market data system, or regular

start-up. This message will be sent individually for each site, i. e. if the failure occurs in the primary

site, only that channel in the primary site is affected, likewise for the backup site.

This message is also sent on security definition and snapshot recovery streams just after a loop

is finished to indicate a new loop will begin in the next packet. The stream reset is the

SequenceReset message with NewSeqNo field (tag 36) = 1 (set new sequence number).

Upon receiving SequenceReset message in the incremental stream during the trading session,

client systems should:

• Consider that the application sequence number has been reset and should be started

from the value in NewSeqNo field.

• After that, replenish the book after receiving the EmptyBook and Order_MBO messages

with the 5th bit set of the tag 37035-matchEventIndicator and the sequenceVersion field

in the header incremented. The purpose of this behavior is to replenish the state of the

order book for all active instruments in case of any missing state during the takeover

process of the market data system.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

44 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

The following diagram illustrates an example of the Stream Reset procedures:

 Channel Reset

Channel Reset will provide a process to sync order books (by order) in the unlikely event of

component failure, when books on the affected channel may be corrupted, or during the system

initialization.

In case of component failure (or during the system initialization), B3 will issue a market data

incremental message (ChannelReset) to notify client systems of order book reset events for all

instruments of that channel.

The steps to detect the Channel Reset condition and proceed to recovery process are shown

below:

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

45 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

1) The ChannelReset will be sent down the Incremental feed. It means that there has been a

component failure and order books of all instruments on the channel are corrupted, or the

system initialization is started.

2) The client system must empty order books of all instruments related to that impacted channel.

3) For all impacted instruments, the Snapshot Recovery data also will be removed on the

Snapshot Recovery feed.

4) If the ChannelReset was sent during the system initialization, the list of instruments will be

resent as well (messages SecurityDefinition). The last SecurityDefinition message will have

its LastFragment field set to ‘true’.

5) Incremental messages will be sent at the incremental stream to populate the order book for

all instruments:

a) The first incremental message will be an EmptyBook, whose SecurityID field indicates

the instrument whose order books will be recovered (only for instruments that previously

had a book). (Although the ChannelReset message resets the book of all instruments,

the EmptyBook will be sent as well, to support clients that are interested only in a few

instruments in the channel and filter messages by its field SecurityID).

b) Then enough Order_MBO messages for reconstructing the order book for the instrument,

with the 5th bit (RecoveryMsg) of the tag 37035-matchEventIndicator set, indicating that’s

a recovery message.

6) Once an order book for a specific instrument has been recovered, B3 will disseminate

incremental real-time market data for that instrument (order book entry will not have the 5th

bit of tag 37035-matchEventIndicator set), but other instruments on the channel may still be

going through the recovery process.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

46 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

The sequence diagram to illustrate the channel reset dynamics follows below.

Notes:

• tag 48-securityID, tag 37035-matchEventIndicator; the value 32 (decimal) is, in binary,

10000 (the 5th bit is set – it indicates recovery).

• Security group phases, security status, statistics and band-related messages can be re-

sent depending on the scenario that provoked the publication of ChannelReset message.

It is recommended that client systems do not clear the statistics until explicitly receiving

SecurityGroupPhase message with tag 1174-SecurityTradingEvent with value 4

(TRADING_SESSION_CHANGE).

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

47 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 EmptyBook (Book Reset)

EmptyBook will provide a process to sync order books (a.k.a. Book Reset) of specific

instruments.

1) Messages will be sent at the incremental stream to populate the order book of each

instrument that must be reinitialized.

a) The first incremental message will be an EmptyBook whose SecurityID field indicates the

instrument whose order books will be recovered (only for instruments that previously had

a book).

b) Then enough OrderMBO messages for reconstructing the order books for the instrument

will be sent for every instrument, with the 5th bit (RecoveryMsg) of the tag 37035-

matchEventIndicator set, indicating that’s a recovery message.

2) Once an order book for a specific instrument has been recovered, B3 will disseminate

incremental real-time market data for that instrument (order book entry will not have the 5th

bit of tag 37035-matchEventIndicator set), but other instruments on the channel may still be

going through the recovery process.

Notes:

• Security status, statistics and band-related messages can be sent depending on the

scenario that provoked the publication of EmptyBook message for the specific instrument.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

48 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

• RptSeq is reset to one after the EmptyBook message related to that instrument is

published. The next message after the EmptyBook will have the value of RptSeq field

equals to one.

7. Recovery

7.1 Snapshot Messages

Instead of having a single, complex, lengthy MarketDataSnapshotFullRefresh for every

instrument that has an order book or statistics, the Snapshot Recovery stream now broadcasts a

series of messages for every instrument.

The following messages are broadcast in the Snapshot Recovery stream:

Message Comment

Sequence Sent periodically when the component is not initialized.

The SequenceNumber (packet sequence number) must be

ignored for this message and is usually 0.

SequenceReset Sent at the end of every snapshot refresh loop.

SnapshotFullRefresh_Header A header for the snapshot of a single instrument counting the

messages related to a given instrument to follow.

SnapshotFullRefresh_Orders A message containing only order book entries (bids and offers).

It must not be larger than a packet. If the order books do not fit a

single packet, this message will be used in the following packets

until all order book entries are sent. If both order books are

empty, this message is not sent for the instrument.

OpeningPrice,

TheoreticalOpeningPrice,

ClosingPrice, AuctionImbalance,

PriceBand, QuantityBand,

HighPrice, LowPrice,

LastTradePrice,

ExecutionStatistics,

SettlementPrice, OpenInterest

For each distinct statistics, auction imbalance, band or reference

price for the instrument, the corresponding message is sent.

Miscellaneous statistics like TradeVolume and VWAP are sent in

the ExecutionStatistics message.

The value of the last trade price or the price and quantity values

that were broadcast in the Incremental Stream in the messages

“Trade”, “ForwardTrade” and “LastTradePrice” are sent as the

LastTradePrice message.

SecurityStatus State of the instrument.

SecurityGroupPhase Phase of the group.

Please note that some messages that are broadcast in the Incremental Stream are not broadcast

in the Snapshot Stream – for instance, the Trade message.

For instance, only the last value of the price of a trade is sent (LastTradePrice); it is not possible

to draw a OHLC chart (that require historical values for the trades) using only the Snapshot

Stream.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

49 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

News, SecurityDefinition and ExecutionSummary messages are not broadcast in the Snapshot

Stream as well.

The picture above shows the SecurityGroupPhase messages that initialize the phase for each

group, and a sequence of packets for a snapshot of 2 instruments; the first instrument (SecurityID

= 1111) has one order book containing 5 orders (2 bids and 3 offers), four statistical values –

ClosingPrice (Px=10.00), OpeningPrice (Px=9.90), ExecutionStatistics (TradeVolume=1000) and

LastTradePrice (Px=10.00); and one SecurityStatus for the trading state of the instrument. The

second instrument (security id = 2222) has one book containing 3 orders (1 bid, 2 offers), four

statistical values – OpeningPrice (Px=15.50), ClosingPrice (Px=18.0), ExecutionStatistics

(TradeVolume=2000) and LastTradePrice (Px=20.0); and SecurityStatus for the trading state of

the instrument.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

50 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

The messages are distributed in 5 packets. The last packet signals the end of the loop and

contains only SequenceReset message. Its SequenceNumber value may be used to detect any

gap in the end of loop, as it turns out to indicate the total number of packets in the loop.

Please note that usually there are more security groups that fit in a single UDP packet; the

diagram above does not imply that all security group information will be broadcast in a single

packet.

7.2 SnapshotRefresh_Header

This message starts a sequence of messages that describe a snapshot for a single instrument.

The relevant fields are:

Field Tag Comment

SecurityID 48 Identification of the security.

LastMsgSeqNumProcessed 369 Sequence number of the last incremental feed packet processed, e.g.,

incorporated in this snapshot.

TotNumReports 911 The number of instruments that have market data for this loop. It is NOT

the number of packets for this snapshot loop.

TotNumBids 37071 Total number of bid orders that constitute this snapshot.

TotNumOffers 37072 Total number of ask orders that constitute this snapshot.

TotNumStats 37070 Total number of statistics (incremental and security status messages) that

constitute this snapshot.

LastRptSeq 37083 Last processed RptSeq (sequence number per instrument update) for this

instrument. Can be used to synchronize the snapshot with the incremental

feed if the client is only interested in a subset of the channel’s instruments.

For instance, in the example given in the picture above, there are two messages

SnapshotRefresh_Header.

The first one has:

Tag Tag Name Value Comments

48 securityID 1111

369 lastMsgSeqNumProcessed 703 The SequenceNumber of the packet (in the Incremental feed) for

the last incremental message used to update the snapshots was

703.

911 totNumReports 2 There are two instruments in loop.

37071 totNumBids 2 Two bids.

37072 totNumOffers 3 Three offers.

37070 totNumStats 5 1 ClosingPrice, 1 OpeningPrice, 1 LastTradePrice, 1

ExecutionStatistics, 1 SecurityStatus.

37083 lastRptSeq 6998 The RptSeq of the last incremental message used for updating the

snapshot of instrument 1111 was 6998.

The second one has:

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

51 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Tag Tag Name Value Comments

48 securityID 2222

369 lastMsgSeqNumProcessed 704 The SequenceNumber of the packet (in the Incremental feed) for

the last incremental message used to update the snapshots was

704.

911 totNumReports 2 There are two instruments in loop.

37071 totNumBids 1 One bid.

37072 totNumOffers 2 Two offers.

37070 totNumStats 5 1 ClosingPrice, 1 OpeningPrice, 1 LastTradePrice, 1

ExecutionStatistics, 1 SecurityStatus.

37083 lastRptSeq 8000 The RptSeq of the last incremental message used for updating the

snapshot of instrument 2222 was 8000.

There is a case that SnapshotFullRefresh_Header is the only message for the snapshot of an

instrument, and it is filled with:

Tag Tag Name Value

48 securityID SecurityID of the instrument

369 lastMsgSeqNumProcessed The last processed packet sequence number of the incremental channel as

of the time the snapshot was generated.

911 totNumReports Same as the other snapshots in the loop

37071 totNumBids 0

37072 totNumOffers 0

37070 totNumStats 0

37083 lastRptSeq 0

The scenario of the case above has a rare occurrence and may happen during a given loop when

the affected instrument has just been deleted, or an EmptyBook message related to that

instrument has just been published in the incremental stream before the publication of its

snapshot to maintain the consistency of tag 911-TotNumReports for the entire loop.

7.3 SnapshotRefresh_Orders

This message contains a list of orders (bids and offers) that are used to recreate the order books.

Once all messages must be smaller than a packet, this message – SnapshotRefresh_Orders –

must be small as well, so it can contain just a few orders (about 21). To transmit the full set of

order books, a series of SnapshotRefresh_Orders messages may be sent.

The following fields are relevant:

Field Tag Comment

securityID 48 Identification of the security.

noMDEntries 711 A repeating group containing a list of orders.

→ mDEntryType 269 0-Bid or 1-Offer.

→ mDEntryPositionNo 290 (MBO) Position of the order, starts with 1.

→ mDEntryPx 270 Price of the order (null for market orders)

→ mDEntrySize 271 Quantity of the order

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

52 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Field Tag Comment

→ secondaryOrderID 198 Exchange-generated order identifier that changes for

each order modification event, or quantity

replenishment in disclosed orders.

→ mDInsertTimestamp 37034 The date and time when the order was inserted or re-

inserted into the order book or manually altered by

MktOps.

→ enteringFirm 37501 Replaces MDEntryBuyer or MDEntrySeller.

→ matchEventIndicator 37035 Identifies if this order is implied or not:

Bit 4: Implied generated order.

The MDEntryTimestamp value of the original order is not transmitted in the snapshot message

because it is not relevant anymore, only the MDInsertTimestamp value (instant the order was

inserted or re-inserted into the order book).

In the example below, there are 38 entries in the order books (14 bids and 24 asks). The entries

were sent in 2 messages SnapshotRefresh_Orders, one with the first 20 orders, the second one

with the remaining 18 orders.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

53 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

7.4 Snapshot Recovery

This recovery method should be used for large-scale data recovery (i.e. major outage or late

joiners) to synchronize client systems to the latest state maintained by B3.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

54 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Client systems can use the Snapshot Recovery stream on each channel to determine the state

of each book in affected channels.

Each Snapshot Recovery stream constantly loops and sends a sequence of messages, starting

with SecurityGroupPhase messages for each Security Group belongs to the channel, then for

each instrument, a message SnapshotFullRefresh_Header, then one or more

SnapshotFullRefresh_Orders (containing the book orders), then incremental messages,

representing the statistics, security status, and bands related to that instrument. It ends with a

packet that contains only a SequenceReset message.

The Snapshot Recovery feed Is known to be valid as of a sequence number on the Incremental

Market Data feed, which is found in tag 369-LastMsgSeqNumProcessed. This sequence number

(tag 369-LastMsgSeqNumProcessed) is found on the SnapshotRefresh_Header message. Client

systems will recover the most recent statistics on the Snapshot Recovery stream. Any

intermediary statistics (for example trades) will not be recovered.

Some considerations:

1. Client systems should queue real-time data until all snapshot data is retrieved from a

given channel. After this, the queued data should then be applied as necessary,

where all queued incremental message with Packet Header field SequenceNumber

less or equal than the value of tag 369-LastMsgSeqNumProcessed of processed

snapshot should be discarded.

2. B3 strongly recommends that the Snapshot Recovery streams be used for recovery

purposes only. Once client systems have retrieved recovery data, client systems

should stop listening (unjoin associated multicast IP/port) to the Snapshot Recovery

streams.

Recommended procedure for recovering:

1. Identify channel(s) in which the client system is out of sync.

2. Listen to and queue all the messages from incremental stream.

3. Join the multicast address/UDP port of the snapshot recovery stream until all

snapshot messages have been received: monitor the header field Sequence Number

whose value is cyclical and the tag 911-TotNumReports = total number of snapshots

of instruments in the current loop. Client systems could receive and queue snapshots

until total number of snapshots received and stored is equal to the value of tag 911-

TotNumReports of the last snapshot message received and the Sequence Number

of the older packet in the queue is less than of the lowest value of tag 369-

LastMsgSeqNumProcessed of all snapshots received.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

55 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

4. Start by removing from the queue the incremental stream messages applying over

related snapshots until consuming all the queued messages: discard queued

incremental messages from the incremental stream whose Sequence Number in the

packet has the same value or less than tag 369-LastMsgSeqNumProcessed in the

snapshot for each instrument in the channel. The discarded messages contain

information that was already included in the related snapshot message.

5. News and SecurityDefinition messages could be processed or not. It depends on

your algorithm/system. Snapshots are not based on those types of messages.

6. Unjoin the snapshot recovery stream, to avoid consuming unnecessary bandwidth.

7. Start normal processing with incremental messages.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

56 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

The picture above shows the process for the Incremental and Snapshot Streams. There are two

instruments in the snapshot loop (TotNumReports = 2); instead of showing individual SBE

messages for each snapshot, we just show the SnapshotHeader messages for short. Starting

from message 1232, the messages from the Incremental Stream are queued; the News and

SecurityDefinition messages are used immediately, but the incremental messages are kept until

the SequenceNumber value of the first message in the queue is lower than the lowest

LastMsgSeqNumProcessed value from all snapshots received in the loop. After that, iterate from

the first incremental message in the queue until the last one and apply (use) it, discarding the

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

57 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

incremental whose sequence number is lower or equal to the LastMsgSeqNumProcessed value

for each snapshot (Discarded messages are highlighted in pink in the picture above).

 Using RptSeq and LastRptSeq for synchronization

If the client system is interested in selected instruments from a given channel, instead of all

instruments, it can use RptSeq (a field from incremental messages, like OrderMBO, Trade,

statistics and SecurityStatus) and LastRptSeq (a field from SnapshotFullRefresh_Header

message) for synchronization instead of SequenceNumber and LastMsgSeqNumProcessed.

The RptSeq field (tag 83) represents a sequence number per instrument. By inspecting this tag,

and checking the gaps between RptSeq values:

• If there is a gap, data was missed for the instrument when packet loss occurred.

• If there is no gap, the data can be used immediately, and the book for this instrument still

has a correct and current state.

There is a case where LastRptSeq value is not present in the snapshot: illiquid instruments that

haven’t received any updates yet from incremental stream, explicitly related to that instrument.

The only statistic present in the snapshot is the SecurityStatus derived from SecurityGroupPhase

message which the instrument belongs. In this particular case, it is safe to say that the client

system can process the incremental messages related to that instrument without discarding them.

RptSeq of a given instrument is reset to one after the EmptyBook message related to that

instrument is published. The next message after the EmptyBook will have the value of RptSeq

field equals to one. It occurs in the following scenarios:

1. When the platform starts up at the beginning of the week or the secondary instance of

the market data system takes over in case of failure of the primary instance.

2. There is an inconsistence in the state of the book of a given instrument, and surveillance

team tries to work around it, resending the state of that instrument (EmptyBook + Order

messages).

In the diagram below, the client system is interested only in instrument 1111, and the packet 703

was lost. Because there is no gap in RptSeq for the instrument 1111, there is no need to recover

packet 703.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

58 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

In the diagram below, the client system is interested only in instrument 1111, and the packet 803

was lost. Because there is a gap in RptSeq for the instrument 1111 (it went from 6998 to 7000),

the packet 803 must be recovered.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

59 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

60 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

The LastRptSeq field (tag 37083) from the SnapshotFullRefresh message represents the value

of RptSeq for the last incremental message that updated the snapshot for the instrument.

In the diagram above, the snapshot for the instrument 1111 was last updated with a SBE

incremental message (RptSeq = 6998) that came in the packet (SequenceNumber = 703), and

the snapshot for the instrument 2222 was last updated with a SBE incremental message (RptSeq

= 8000) that came in the packet (SequenceNumber = 703) but has just been serialized and

published after receiving incremental packet (SequenceNumber = 704) that incidentally does not

have any market data for instrument 2222.

Here follows a variation of the synchronization algorithm, using RptSeq/LastRptSeq instead of

SequenceNumber/LastMsgSeqNumProcessed, if the client system is interested in a few

instruments of the channel. (The recovery time is not speed up because the snapshot cycle time

is not changed). It is given for supplementary purposes only, because in practice RptSeq is most

useful for detecting gaps in incremental messages for a few instruments, not for snapshot

synchronization.

• Identify channel(s) in which the client system is out of sync.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

61 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

• Listen to and queue the messages from incremental stream the client system is interested

on (use SecurityID and RptSeq fields for filter purposes).

• Join the multicast address/UDP port of the snapshot recovery stream until all snapshot

messages have been received, ignoring the instruments the client system is not

interested: monitor the SnapshotFullRefresh_Header message fields SecurityID and the

field LastRptSeq (and the field 911–TotNumReports – to check the total number of

snapshots in the current loop). Client systems could receive and queue snapshots until

total number of snapshots received is equal to the value of tag 911–TotNumReports of

the last snapshot message received.

• Start by removing from the queue the incremental stream messages applying over related

snapshots until consuming all the queued messages: discard queued incremental

messages from the incremental stream whose RptSeq field has the same value or less

than tag 37083–LastRptSeq in the snapshot for the instrument of interest.

• The discarded messages contain information that was already included in the related

snapshot message.

• SecurityDefinition and News messages have no RptSeq and are not reflected on the

received snapshot, so they must be processed immediately, or discarded if the client

system is not interested on them.

• Unjoin the snapshot recovery stream, to avoid consuming unnecessary bandwidth.

• Start normal processing with incremental messages.

7.5 Sequence Message

The Sequence message works like a heartbeat and has a special field NextSeqNo (tag 35526)

that can be useful in the snapshot recovery process. This field contains the next value of

SequenceNumber for a packet that is not a heartbeat.

The value of SequenceNumber field (in Packet Header) for this message is 0 (zero) and must be

ignored (it is not meant to be saved or recovered). This message only tells the client application

that the system is idle, but still running.

Suppose that the client program is trying to synchronize with an idle market data channel that is

currently sending Sequence messages in the incremental stream. Using the NextSeqNo field, the

algorithm can get the SequenceNumber for the next incremental message that will be sent in the

incremental stream. In the picture below, the message 1236 and subsequent messages can be

used.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

62 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Sequence messages also are published on the Instrument Definition and Snapshot streams and

tells the client application that the recovery system is idle, but still running. In this situation, client

application needs to wait until ChannelReset message is published in the Incremental stream,

and after that, book-related messages are replenished. Recovery system will also be fuelled with

those messages and will start to replay them on Instrument Definition and Snapshot streams.

8. Market Data Entry Types

This section lists the market data entry types supported in the B3 feed. Each entry type contains

relevant trading information such as order book, trades, and statistical data. Note that availability

of each of these types is subject to the trading platform functionality for Equities and Derivatives.

For every MDEntryType as defined by FIX, there is a different SBE Message:

MDEntryType SBE Message Description Comment

0 or 1 Order_MBO New / Change

Bid / Offer

The book on the buy (bid) or sell (offer) side

for the security.

The book is always order-depth based (each

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

63 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

MDEntryType SBE Message Description Comment

individual order appears as a separate book

entry).

This message includes or changes an order in

the order book.

0 or 1 DeleteOrder_MBO Delete

Bid / Offer

This message deletes a single order in the

order book.

0 or 1 MassDeleteOrders_MBO Delete From /

Delete Thru

Bid / Offer

This message deletes a set of orders in the

order book.

2 Trade Trade The completed trades for the security.

2 ForwardTrade Trade for a

“Termo” (Forward)

instrument

Specialized version of “Trade” that has two

additional fields for forward (“termo”)

instruments.

2 LastTradePrice Last Trade Price A statistical message that reports the last trade

price and quantity. Incremental stream: it is

sent very rarely (the Trade message already

conveys the last trade price and quantity).

Snapshot Stream: it is sent for each

instrument.

4 OpeningPrice Opening Price The opening price of the security (first trade).

4 TheoreticalOpeningPrice Theoretical

Opening Price

Theoretical opening price, calculated and

updated based on the orders presented in the

book during every auction including the pre-

opening / pre-closing auction.

5 ClosingPrice Closing price The closing price of the security (previous

day’s last trade).

6 SettlementPrice Settlement price Settlement price or the previous day’s

adjusted closing price.

7 HighPrice Trading Session

High Price

The highest price traded for the security in the

trading session.

8 LowPrice Trading Session

Low Price

The lowest price traded for the security in the

trading session.

A AuctionImbalance Imbalance Information related to imbalance of auctions

such as side and quantity.

C OpenInterest Open Interest Total number of contracts in a commodity or

options market that are still open.

J EmptyBook Empty Book Indicates that the order book for the related

instrument (or for all instruments of the

channel) is no longer valid.

g PriceBand Price band Contains price banding information.

h QuantityBand Quantity band Contains quantity banding information.

9 ExecutionStatistics Execution

Statistics

Contains some statistics (like VWAP and

TradeVolume) from the trading event.

s ExecutionSummary Execution

Summary

Summarizes an event that resulted in one or

more trades. It is sent as the first message

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

64 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

MDEntryType SBE Message Description Comment

from all market data messages that resulted

from that event.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

65 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

9. Trading Event Processing – matchEventIndicator

All incremental messages have a field – matchEventIndicator (tag 37035) – that is a set of flags

indicating the end of a trading event (EndOfEvent, bit 7) and/or if this message is a retransmission

(RecoveryMsg, bit 5) and also for order and trade/trade bust messages: the implied indicator

(that informs if the related order was generated from an implied mechanism or if the related trade

is the result of a match that involves an implied order). The “RecoveryMsg” flag is sent only for

Order, ChannelReset and EmptyBook messages. There are other flags that are currently

reserved.

Let us review the example given in chapter 5.4 before.

For instance, let us say that an ask order was sent to the Matching Engine that matched the

resting order whose secondaryOrderID is 727042222275. The resulting market data could be

expressed in the former MBO diffusion as the following 35=X FIX message – this represents the

first trade of an instrument in the day, followed by the opening price, high price, low price, VWAP

and the matching (removal) of the resting order of secondaryOrderID = 727042222275 (that is

represented using the tag 37, not the tag 198).

35=X|268=6|
 279=0|269=2|288=85|289=88|1003=10|271=1|270=65265|48=100988|
 279=0|269=4|270=65265|48=100988|
 279=0|269=7|270=65265|48=100988|
 279=0|269=8|270=65265|48=100988|
 279=0|269=9|270=65265|48=100988|
 279=2|269=0|48=100988|37=727042222275|290=1|

In Binary UMDF, we will send two additional messages that will help to make faster trading

decisions. The first one is ExecutionSummary and will be sent as the first message. The second

one is ExecutionStatistics and will report some trade statistics that apply to the trade execution,

like VWAP price, Trade Volume, and number of the trades in the session:

Message Name FIX

equivalent

Template

ID

Message

Size

(bytes)

SBE message contents

ExecutionSummary 55 64 SecurityID=100988, LastPx=65265,

FillQty=1, CxlQty=0,

TradedHiddenQty=0, AggressorSide=1

Trade 269=2, 279=0 53 52 SecurityID: 100988, MDEntryBuyer:

85, MDEntrySeller: 88, TradeID: 10,

MDEntrySize: 1,

MDEntryPx: 65265,

MatchEventIndicator: {}

OpeningPrice 269=4, 279=0 15 40 SecurityID: 100988, MDEntryPx:

65265, MatchEventIndicator: {}

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

66 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Message Name FIX

equivalent

Template

ID

Message

Size

(bytes)

SBE message contents

HighPrice 269=7, 279=0 24 32 SecurityID: 100988, MDEntryPx:

65265, MatchEventIndicator: {}

LowPrice 269=8, 279=0 25 32 SecurityID: 100988, MDEntryPx:

65265, MatchEventIndicator: {}

DeleteOrder 269=0, 279=2 51 40 SecurityID: 100988,

SecondaryOrderID: 727042222275,

MDEntryPositionNo: 1,

MatchEventIndicator: {}

ExecutionStatistics 269=9 55 64 SecurityID: 100988, TradeVolume: 1,

NumberOfTrades: 100, VwapPx: 65265,

MatchEventIndicator: {EndOfEvent}

The matchEventIndicator field (tag 37035) is a ‘set’, that is a set of bits representing a collection

of non-exclusive choices. All messages belong to the same “trading event”. The last message is

marked with EndOfEvent, as you can see in the table below:

Decimal Value RecoveryMsg (bit 5) EndOfEvent (bit 7)

0 0 0

128 0 1 (i.e., 27, or 1 << 7)

32 1 (i.e., 25, or 1 << 5) 0

160 = 128 | 32 1 (i.e., 25, or 1 << 5) 1 (i.e., 27, or 1 << 7)

If the messages were repeated due to a recovery process, the order messages would be marked

with the “RecoveryMsg” bit as well, so the values for the tag 37035 would be 32 ({RecoveryMsg})

and 160 ({RecoveryMsg, EndOfEvent}) respectively. The other messages (statistics and trading

state) report the current status of the instrument, so they are not marked with “RecoveryMsg” flag.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

67 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

10. Order Book

There are two ways to view the same order book:

- By Price Level and Order Priority

- By Position Number

The Matching Engine works with order books by price level and order priority; the position number

is inferred. MBO uses a view of the book by position number.

10.1 Book: Position Number

Order books are internally kept in price-level and priority order, but the position number is

synthesized by Market Data components to relay this information. The position number starts by

1.

The examples given above will be shown with the Position Numbers (tag 290-

MDEntryPositionNo).

Example 1: Order books have only “Limit orders”:

Bid Ask

Price Secondary

OrderID

Quantity Position Price Secondary

OrderID

Quantity

7.28 330 100 1 7.31 800 300

7.28 700 200 2 7.32 320 100

7.20 100 100 3 7.32 600 200

 4 7.50 200 100

5 7.52 300 400

Example 2: A book has some “market orders”:

Bid Ask

Price Secondary

OrderID

Quantity Position Price Secondary

OrderID

Quantity

 1 N/A 900 300

2 N/A 920 400

3 7.32 600 200

4 7.50 200 100

5 7.52 300 400

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

68 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

11. Incremental Order Book Management

Order books received via the SBE feed are incremental, i. e. changes to the book are relayed on

individual messages providing “deltas” of the previous state of the book.

The actions to be executed by the client system receiving the incremental message are

determined by the type of incremental message.

MBO Action FIX Equivalent

Order Add or /modify an order. 279=0 (NEW) or 1 (CHANGE),

269=0 (BID) or 1 (OFFER)

DeleteOrder

Delete a single existing order. 279=2 (DELETE), 269=0 (BID) or 1 (OFFER)

MassDeleteOrders Delete a set of orders (DELETE FROM,

DELETE THRU).

3 (DELETE_THRU) or 4 (DELETE_FROM)

269=0 (BID) or 1 (OFFER)

EmptyBook Empty the books (bid and ask) of an

instrument.

269=J

11.1 Incremental Book Management–- MBO

Order books received via the MBO feed are incremental, i.e. changes to the book are relayed on

individual messages providing “deltas” of the previous state of the book.

The actions to be executed by the client system receiving the incremental message are

determined by tag 279-MDUpdateAction, whose value carries an instruction that can be either

add, delete, change, delete_from or delete_thru. The items in the order book that are affected by

the action stated in tag 279 are stated in tag 290-MDEntryPositionNo, which contains a position

in the order book.

For bid or offer book entries, the deletion is based on the entry’s position (tag 290-

MDEntryPositionNo). For example, assume ten bids for a security. Adding a bid with tag 290-

MDEntryPositionNo = 4 requires the receiver to shift down other Market Data Entries, i.e. the

Market Data Entry in the 4th display position will shift to the 5th, the 5th shifts to the 6th, etc. until

the 10th shifts to the 11th. B3 will not send a modification of all entries in the 4th through 10th

positions just to update the tag 290-MDEntryPositionNo field; the receiver of the market data must

infer the change.

Similarly, deleting a Market Data Entry in the 7th position causes the 8th Market Data Entry to

move into the 7th position, the 9th to shift into the 8th position, etc. B3 will not issue a change action

to modify the position of an entry in the order book. Change updates are only sent when a value

applicable to a specific tag 290-MDEntryPositionNo – such as total quantity or number of orders

– changes.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

69 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 Order depth book

Order depth book contains order by order information, where each entry represents an individual

order. For example, this is how an order-depth book looks like:

Bid Offer

PosNo Size Px Px Size PosNo

1 5000 10.58 11.03 7000 1

2 4000 10.58 11.03 2000 2

3 3000 10.57 11.05 1000 3

4 4000 10.54 4

B3 provides the full depth of the book for order-depth book, i.e. the client will always receive

updates for all the orders that are in the order book, even if it is the last one (worst price).

In general, if a trade occurs, B3 will send a delete or change data block to update the book. The

trade data block itself is not used to update the order book.

Below are the messages sent for order depth book update:

11.1.1.1 Order_MBO (new or change existing order)

Tag Tag Name Presence Comments

48 securityID R Security ID as defined by B3. For the SecurityID list, see the

SecurityDefinition message in Market Data feed.

37035 matchEventIndicator R Set of indicators that identify some market data events. Here are the

possible bits applied to this message when it is set:

Bit 4: Implied generated order.

Bit 5: Message is sent during recovery process.

Bit 7: Last message for the event.

279 mDUpdateAction R Update Action (NEW, CHANGE).

269 mDEntryType R Entry Type (BID or OFFER).

270 mDEntryPx O Price per share or contract. Conditionally required if the order type

requires a price (not market orders).

271 mDEntrySize R Displayed quantity or volume represented by the Market Data Entry.

290 mDEntryPositionNo R Display position of a bid or offer, numbered from most competitive to

least competitive, per market side, beginning with 1.

37501 enteringFirm O Identifies the broker firm.

37034 mDInsertTimestamp R The date and time when the order was inserted or re-inserted into the

order book or manually altered by MktOps.

198 secondaryOrderID R Exchange-generated order identifier that changes for each order

modification event, or quantity replenishment in disclosed orders.

37033 mDEntryTimestamp R Timestamp when the order event occurred.

One entry per order: same
price on more than one entry.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

70 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

11.1.1.2 DeleteOrder_MBO (delete existing order)

Tag Tag Name Presence Comments

48 securityID R Security ID as defined by B3. For the SecurityID list, see the Security

Definition message in Market Data feed.

37035 matchEventIndicator R Set of indicators that identify some market data events. Here are the

possible bits applied to this message when it is set:

Bit 4: Implied generated order.

Bit 7: Last message for the event.

269 mDEntryType R Entry Type (BID or OFFER).

290 mDEntryPositionNo R Display position of a bid or offer, numbered from most competitive to

least competitive, per market side, beginning with 1.

271 mDEntrySize O Quantity of the deleted order. Absent if the deletion is the result of a

matching event.

198 secondaryOrderID R Exchange-generated order identifier that changes for each order

modification event, or quantity replenishment in disclosed orders.

37033 mDEntryTimestamp R Timestamp when the order event occurred.

11.1.1.3 MassDeleteOrders (delete several orders in given side of the book)

Tag Tag Name Presence Comments

48 securityID R Security ID as defined by B3. For the SecurityID list, see the Security

Definition message in Market Data feed.

37035 matchEventIndicator R Set of indicators that identify some market data events. Here are the

possible bits applied to this message when it is set:

Bit 7: Last message for the event.

279 mDUpdateAction R Update Action (DELETE_FROM, DELETE_THRU).

269 mDEntryType R Entry Type (BID or OFFER).

290 mDEntryPositionNo R Display position of a bid or offer where orders will be deleted (up or down

from this position).

37033 mDEntryTimestamp R Timestamp when the mass delete order event occurred.

For more details, please check the Binary UMDF Message Reference document.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

71 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 Delete From

The message is MassDeleteOrders with MDUpdateAction = DELETE_FROM.

This message allows for more efficient book management by providing an extension to tag 279-

MDUpdateAction that allows the deletion of all orders from a certain position.

When an order is entered that causes several executions and sweeps the order book, causing

several price levels to be deleted, instead of sending deletions for several price levels, the

MDUpdateAction “Delete From” (tag 279 = 4) is used, along with the tag MDEntryType (tag 269

= BID–- ‘0’ for the BID book, OFFER–- ‘1’ for the ASK or OFFER book). It indicates that all

positions from the position stated in tag 290-MDEntryPositionNo up until position 1 must be

deleted. This will cause the market data entry that was in position MDEntryPositionNo + 1 to be

the first position now.

The following example of an order-depth book illustrates this behavior:

Bid Offer

PosNo Size Px Px Size PosNo

1 5000 10.58 11.03 7000 1

2 4000 10.58 11.03 2000 2

3 3000 10.57 11.05 1000 3

4 4000 10.54 4

A sell order is sent with quantity 12000 and price 10.57, which executes against the 3 existing

buy orders in the order book. B3 will send an incremental market data message with the following

characteristics:

MassDeleteOrders

MDUpdateAction DELETE_FROM (4)

MDEntryType BID (0)

MDEntryPositionNo 3

The resulting order book as displayed by the client system should be:

Bid Offer

PosNo Size Px Px Size PosNo

1 4000 10.54 11.03 7000 1

2 11.03 2000 2

3 11.05 1000 3

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

72 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 Delete Thru

The message is MassDeleteOrders with MDUpdateAction = DELETE_THRU.

This message allows for more efficient order book management by providing an extension to tag

279-MDUpdateAction allowing delete through a position. All entries of related side of the order

book (Bid or Offer) are deleted; the value of tag 290-MDEntryPositionNo is always 1, and it does

not remove the statistics.

The following example of an order-depth book illustrates this behavior:

Bid Offer

PosNo Size Px Px Size PosNo

1 5000 10.58 11.03 7000 1

2 4000 10.58 11.03 2000 2

3 3000 10.57 11.05 1000 3

4 4000 10.54 4

The market supervisor decided to cancel all bid entries, so B3 will send an incremental market

data message with the following characteristics:

MassDeleteOrders

MDUpdateAction DELETE_THRU (3)

MDEntryType BID (0)

MDEntryPositionNo 1

The resulting order book as displayed by the client system should be:
Bid Offer

PosNo Size Px Px Size PosNo

1 11.03 7000 1

2 11.03 2000 2

3 11.05 1000 3

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

73 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

12. Trade and real-time statistical data

There is a number of statistics (market data events) which are related to changes in an order book

but these events are not used to update the order book. The following types of information fit this

category: last best price, trade, high/low trade price, and pre-opening statistics. These events

describe the behavior of the trading sessions and allow a user to know when the market is moving

in a certain direction and provide historical information on how the market has performed.

The following messages are related to trade and statistical data:

MBO Action FIX Equivalent

OpeningPrice
TheoreticalOpeningPrice
ClosingPrice

Relays the information of Opening, Theoretical
Opening, and Closing Prices.

279=0, 269=4
279=0, 269=4
279=0, 269=5

Trade
ForwardTrade

Describes a single trade. (ForwardTrade is used with
forward (“termo”) instruments).

279=0, 269=2

LastTradePrice The value of the last trade. 279=0, 269=2, 277=U

ExecutionSummary Relays execution summary information on one
instrument.

ExecutionStatistics Relays execution summary statistics information on
one instrument.

279=0, 269=9

AuctionImbalance Relays auction details on one instrument. 279=0, 269=A

PriceBand
QuantityBand

Disseminates price and quantity bands information on
one instrument.

279=0, 269=g
279=0, 269=h

HighPrice
LowPrice

Trading session high price and low price. 269=7 / 8

EmptyBook Empty the order book for one instrument. 269=J

For more details on each of the messages, please refer to Binary UMDF Message Reference

document.

Prices with different decimals!

Closing prices differ from other prices generated by the matching engine, as these

values can be adjusted based on corporate events and, depending on the applied

factor, can have up to 8 decimal places. Therefore, mdEntryPx field from

ClosingPrice message and netChgPrevDay field from OpeningPrice and

ExecutionStatistics messages all use types that have exponential part = -8.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

74 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

12.1 ExecutionSummary

The ExecutionSummary message is sent in four scenarios:

1. When an incoming (aggressor) order matches passive orders in the book.

2. When a cross order is successfully registered.

3. When a trade is generated when a retail order aggresses a hidden RLP order from its

own brokerage firm (RLP trade).

4. Block trades for the following types: RFQ, Block Book and Midpoint.

The following conditions do not generate ExecutionSummary message:

1. Trades originated when auction ends (generated by matching orders that forms the

theoretical price during the auction).

2. Trades published by manual insertion/change from market operation due to some

operational reason.

3. Trades originated from forward agreement (Termo): trades on the Termo instrument and

trades on the underlying instrument (cash instrument) in case of forward + cash (“Termo

Vista”).

It contains the instrument identifier, aggressor side and timestamp, worst price, total executed

quantity, traded hidden quantity, and cancelled quantity (for instance, due to self-trade

prevention). The individual trades and order deletions or modifications are sent after this

message. That’s why matchEventIndicator (tag 37035) field is not present in the message: this

information is never the last one belonged to the current matching event.

This message has no corresponding equivalent in FIX/FAST diffusion.

Here are the main fields of the ExecutionSummary message:

Tag Tag Name Pres. Data Type Comments

48 securityID R SecurityID Security ID as defined by B3. For the

SecurityID list, see the SecurityDefinition

message in Market Data feed.

2446 aggressorSide R AggressorSide Enum Which side is aggressor of all fills.

31 lastPx R Price Price of the last fill (i.e., worst price of this

match).

1365 fillQty R Quantity Quantity of all fills.

37779 tradedHiddenQty O QuantityOptional Total quantity of matched passive orders

that is not displayed to the market. That

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

75 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Tag Tag Name Pres. Data Type Comments

includes matched iceberg orders, RLP

trades, block trades.

84 cxlQty O QuantityOptional Total quantity canceled during matching

process (e.g., due to self-trade).

2445 aggressorTime R UTCTimestampNanos Timestamp of aggressive order resulting in

match event. If the resulting matches are

due to an aggressive order, the field reflects

the instant this order enters the FIFO queue

in the order entry flow.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

76 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Here are some scenarios to clarify how Execution Summary works:

 Matching disclosed quantity orders (iceberg orders)

Disclosed Quantity allows participants to trade a large lot of a given security without exposing the

whole lot in the market at once.

ExecutionSummary message provides a way to inform all hidden quantity traded for the whole

event (transaction) independently if several different orders are involved, even if they are matched

for each replenishment.

On the order entry side, MaxFloor (tag 111) field determines the largest amount which is shown

in the order book at a time.

Suppose a sell order matches several passive orders in the buy side (all orders have limit price =

20.50), including an ordinary order with higher priority and an iceberg order described below:

Msg Side OrderID Secondary

OrderID

Qty Max

Floor

Last

Qty

Leaves

Qty

Ord

Status

Exec

Type

D BUY - - 10000 500 - - - -

Iceberg order is accepted

8 BUY ORD_1 SORD_1 10000 500 10000 New New

D SELL - - 1800 - - - - -

8 SELL ORD_11 SORD_11 1800 - - 1800 New New

Disclosed quantity of 500 shares is totally filled by an aggressive order

8 BUY ORD_21 SORD_21 800 0 800 0 Filled Trade

8 SELL ORD_11 SORD_11 1800 - 800 1000 Partially

Filled

Trade

8 BUY ORD_1 SORD_1 10000 500 500 9500 Partially

Filled

Trade

8 SELL ORD_11 SORD_11 1800 - 500 500 Partially

Filled

Trade

Order is replenished and a new Order ID (SORD_2) is sent

8 BUY ORD_1 SORD_2 10000 500 9500 Partially

Filled

Restated

Disclosed quantity of 500 shares is totally filled by the same aggressive order

8 BUY ORD_1 SORD_2 10000 500 500 9000 Partially

Filled

Trade

8 SELL ORD_11 SORD_11 1800 - 500 0 Filled Trade

Order is replenished and a new Order ID (SORD_3) is sent

8 BUY ORD_1 SORD_3 10000 500 9000 Partially

Filled

Restated

Existing
higher
priority

order in the
book is

filled first

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

77 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

On the market data side:

 ExecutionSummary message is highlighted for better clarification:

MDEntryType AggresorSide LastPx FillQty TradedHiddenQty CxlQty

s SELL 20.50 1800 1000 0

Three trades were generated in this event:
MDEntryType MDEntryPx MDEntrySize TradeID

2 20.50 800 10

2 20.50 500 20

2 20.50 500 30

Order book updates in this event:

Message MDEntry

Type

MDUpdate

Action

MDEntryPx MDEntry

Size

MDEntryPositio

nNo

Secondary

OrderID

DeleteOrder_MBO 1 (Offer) 2 (DELETE) - 800 1 SORD_21

DeleteOrder_MBO 1 (Offer) 2 (DELETE) - 500 1 SORD_1

Order_MBO 1 (Offer) 0 (NEW) 20.50 500 1 SORD_2

DeleteOrder_MBO 1 (Offer) 2 (DELETE) - 500 1 SORD_2

Order_MBO 1 (Offer) 0 (NEW) 20.50 500 1 SORD_3

For better understanding of the dynamics of matching event, we omitted the publication of related

statistics such as HighPrice, LowPrice, ExecutionStatistics messages.

 Triggering self-trade prevention during a matching

Self-trading prevention at customer level is a functionality that aims to restrict matching between

buying and selling orders from the same customer, regardless of firm.

For this purpose, the customer must be identified with a unique Investor ID, included within the

order message.

Self-trading prevention gives the opportunity to choose which order should be canceled when

identifying a potential match between an aggressor and a resting order. The options available are

cancel aggressor order (default), cancel resting order and cancel both orders.

ExecutionSummary message provides a way to inform canceled quantity due to triggering self-

trade prevention mechanism for the whole event (transaction) independently if several different

orders are involved.

NOTE

Each time the disclosed quantity of an iceberg order is replenished, it enters
in the end of the order list with the same price-level with the lowest priority
(like a new order), to preserve the hidden nature of iceberg orders.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

78 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

See the order entry side below for better clarification. We will use the “cancel resting order” option,

for simplification:

Msg Side OrderID Price /

LastPx

OrderQty /

Remaining

Qty

Self-Trade

Prevention

Instruction

Investor

ID

Exec

Restatement

Reason

Ord

Status

Exec

Type

D BUY - 21.00 100 - -

8 BUY ORD_1 21.00 100 / 100 - - - New New

D BUY - 20.50 200 2 (Cancel

Resting

Order)

123

8 BUY ORD_2 20.50 200 / 200 2 123 - New New

Sell order is entered to match those 2 orders above

D SELL 20.50 300 2 123

8 SELL ORD_3 20.50 300 / 300 2 123 - New New

8 SELL ORD_3 20.50 /

20.50

300 / 200 2 123 - Partially

Filled

Trade

8 BUY ORD_1 21.00 /

20.50

100 / 0 - - - Filled Trade

8 BUY ORD_2 20.50 200 / 0 2 123 107 Canceled Canceled

On the market data side:

First of all, there are the insertion of two orders in the book before the aggression:

Message MDEntry

Type

MDUpdate

Action

MDEntryPx MDEntry

Size

MDEntryPosition

No

Secondary

OrderID

Order_MBO 0 (Bid) 0 (NEW) 21.00 100 1 Not relevant

Order_MBO 0 (Bid) 0 (NEW) 20.50 200 2 Not relevant

Below are the messages published during the aggression:

ExecutionSummary message is highlighted for better clarification:

MDEntryType AggresorSide LastPx FillQty TradedHiddenQty CxlQty

s SELL 20.50 100 0 200

The cancelation of passive order due to triggering self-trade prevention mechanism is published

before the Trade messages:

Message MDEntry

Type

MDUpdate

Action

MDEntryPx MDEntry

Size

MDEntryPosition

No

Secondary

OrderID

DeleteOrder_MBO 0 (Bid) 2 (DELETE) - 200 2 Not relevant

After that, trade was published related the only matching that occurred:

MDEntryType MDEntryPx MDEntrySize TradeID

2 20.50 100 40

Order book updates related to the matching event:

Message MDEntry

Type

MDUpdate

Action

MDEntryPx MDEntry

Size

MDEntryPosition

No

Secondary

OrderID

DeleteOrder_MBO 0 (Bid) 2 (DELETE) - 100 1 Not relevant

Order_MBO 1 (Offer) 0 (NEW) 20.50 200 1 Not relevant

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

79 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 Triggering several stop orders/trades in a single matching event

This is a special case, where several stop orders are triggered by a previous match, and those

orders, when added in the open book, match with orders in the other side of the book. In this

scenario, all of trades originated from the stop orders added in the open book belonged to the

same matching event that is composed by one ExecutionSummary message and several Trade,

DeleteOrder and Order messages, and also related statistics messages with the last message in

this event with matchEventIndicator flag set to true indicating the end of the current event.

On the market data side:

Here is the state of the open book before the aggression:

Bid Ask

Price Secondary

OrderID

Quantity Position Price Secondary

OrderID

Quantity

7.28 330 100 1 7.31 800 300

7.28 700 200 2 7.32 320 100

7.20 100 100 3 7.32 600 200

 4 7.50 200 100

5 7.52 300 400

There are stop orders that haven’t triggered yet:

Bid

Quantity Price Stop Price

100 7.31 7.31

200 7.32 7.31

200 7.32 7.31

Then, a bid order (price = 7.32, orderQty = 200) is added and instantly matches with the top of

the offer book. A matching event that consists of ExecutionSummary, Trade, DeleteOrder

messages and also statistics messages are published, and it is not represented here.

The resulting book before the stop orders entering in the open book is:

Bid Ask

Price Secondary

OrderID

Quantity Position Price Secondary

OrderID

Quantity

7.28 330 100 1 7.31 800 100

7.28 700 200 2 7.32 320 100

7.20 100 100 3 7.32 600 200

 4 7.50 200 100

5 7.52 300 400

This action triggers the stop orders, and in this example, those 3 orders aggress several offers in

the top of the book in one matching event as show below:

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

80 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

ExecutionSummary:

MDEntryType AggresorSide LastPx FillQty TradedHiddenQty CxlQty

s BUY 7.32 400 0 0

See that the traded quantity of those stop orders is not reflected in the tradedHiddenQty field.

Here are the other relevant messages that belongs to the event:

Trades:

MDEntryType MDUpdateAction TradeCondition TradeID MDEntryPx MDEntrySize

2 (Trade) NEW Regular trade 1210 7.31 100

2 (Trade) NEW Regular trade 1220 7.32 100

2 (Trade) NEW Regular trade 1230 7.32 100

2 (Trade) NEW Regular trade 1240 7.32 100

After the matches, there is a remaining quantity from the last stop order that enters in the open

book (bid side):

Message MDEntry

Type

MDUpdate

Action

MDEntryPx MDEntry

Size

MDEntryPosition

No

Secondary

OrderID

Order_MBO 0 (Bid) 0 (NEW) 7.32 100 1 720

The final state of the book is:

Bid Ask

Price Secondary

OrderID

Quantity Position Price Secondary

OrderID

Quantity

7.32 720 100 1 7.50 200 100

7.28 330 100 2 7.52 300 400

7.28 700 200 3 7.52 320 100

7.20 100 100 4 7.55 360 300

 5 7.55 370 200

For better understanding of the dynamics of matching event, we omitted the publication of related

statistics such as HighPrice, LowPrice, ExecutionStatistics messages.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

81 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

12.2 ExecutionStatistics

The ExecutionStatistics message is sent as one of the statistics related to the trade execution. It

conveys some useful statistics like VWAP, TradeVolume and number of trade events that are

updated for each execution and are related to the whole trading session and will be reset after

the end of the related trading session. Here are the main fields of the ExecutionStatistics

message:

Tag Tag Name Pres. Data Type Comments

48 securityID R SecurityID Security ID as defined by B3. For the SecurityID

list, see the Security Definition message in Market

Data feed.

37035 matchEventIndicator R MatchEventIndicator

Set

Set of indicators that identify some market data
events. Here are the possible bits applied to this
message when it is set:
Bit 7: Last message for the event.

336 tradingSessionID R TradingSessionID

Enum

Identifier for trading session.

1020 tradeVolume R QuantityVolume Total traded volume for the session.

37778 vwapPx O PriceOptional Volume-weighted average price.

451 netChgPrevDay O PriceOffset8Optional Net change from previous trading day’s closing

price vs. last traded price.

37073 numberOfTrades R NumberOfTrades Number of trades executed in the session.

75 tradeDate R LocalMktDate Used to specify the trading date for which a set of

market data applies.

There is a new field “numberOfTrades” that just counts the number of trades executed in the

session for the instrument. It is a counterpart of “tradeVolume”, that is the total traded volume for

the session. It has no equivalent in the FIX/FAST diffusion.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

82 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

12.3 Trade

The Trade message is sent when a trade occurs to provide volume and trade statistics.

Here are the main fields of the Trade message:

Tag Tag Name Pres. Data Type Comments

48 securityID R SecurityID Security ID as defined by B3. For the

SecurityID list, see the Security Definition

message in Market Data feed.

37035 matchEventIndicator R MatchEventIndicator

Set

Set of indicators that identify some market
data events. Here are the possible bits
applied to this message when it is set:
Bit 4: Trade resulted from an implied
generated order.
Bit 7: Last message for the event.

336 tradingSessionID R TradingSessionID

Enum

Identifier for trading session.

277 tradeCondition R TradeCondition Set Set of conditions describing a trade.

270 mDEntryPx R Price Price of the Market Data Entry.

271 mDEntrySize R Quantity Quantity or volume represented by the

Market Data Entry.

1003 tradeID R TradeID Contains the unique identifier for this trade

per instrument + trading date, as assigned

by the exchange.

288 mDEntryBuyer O FirmOptional For reporting trades (buying party).

289 mDEntrySeller O FirmOptional For reporting trades (selling party).

75 tradeDate R LocalMktDate Used to specify the trading date for which a

set of market data applies.

829 trdSubType O TrdSubType Enum Sub type of trade assigned to a trade.

37033 mDEntryTimestamp R UTCTimestampNanos Timestamp when the trade event occurred.

NOTE

Unless the bit-3 (OutOfSequence) of TradeCondition is set, the field
MDEntryPx value is the last traded price.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

83 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 TradeCondition

Each trade has a set of properties (“conditions”) that are listed below:

Condition Name FIX

Equivalent

Bit

Number

Condition

OpeningPrice “R” 0 This is one of the trades that forms the opening trade

event that indicates when an instrument is traded for the

first time in the trading session in progress.

Crossed “X” 1 Trade resulted from a cross order.

LastTradeAtTheSamePrice “L” 2 Trade’s price is the same as the last trade price.

OutOfSequence “S” 3 This trade is out of sequence and its price must not be

used for determining the last trade price.

TradeOnBehalf “2” 6 Marketplace entered trade.

RegularTrade 13 1=Regular Trade, 0=Special trade type (see TrdSubType

enum).

BlockTrade 14 1=Block Trade (see TrdSubType enum for details),

0=Not.

 TrdSubType

If a trade is not a regular one, i.e., RegularTrade condition (13-bit) is not set in the TradeCondition

set, then TrdSubType enum (tag 829) informs one of the following sub type of trade:

Enum Type Value Is Block Trade? Description

MULTI_ASSET_TRADE 101 Multi Asset Trade. Trade in the cash instrument

originated from a forward + cash agreement

(Termo Vista).

LEG_TRADE 102 Leg Trade. Indicates trade of leg originated from

a trade of related UDS or EDS.

MIDPOINT_TRADE 103 ✓ Midpoint Trade.

BLOCK_BOOK_TRADE 104 ✓ Block Book Trade.

RFQ_TRADE 105 ✓ Request for Quote (RFQ) Trade.

RLP_TRADE 106 Retail Liquidity Provider (RLP) Trade.

TAC_TRADE 107 Trade at Close Trade.

TAA_TRADE 108 Trade at Average Trade.

SWEEP_TRADE 109 Sweep Trade. Can be combined with

TradeCondition: Crossed (“X”).

 Relationship between TradeCondition and TrdSubType

What is a Regular Trade?

➢ Regular Trade is everything except: RFQ trade, Block Book trade, Midpoint trade,

Leg trade, Multi Asset trade and RLP (Retail Liquidity Provider) trade.

➢ So, crossed, sweep trade and trade on behalf are both considered a regular trade.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

84 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

➢ Sweep Trade indicates that the trade is part of a Sweep and Cross operation, when

a trader sends and special cross order that tries to sweep the other side of the

book, and after that, if there is any remaining quantity, tries to cross with the other

side account within the same firm.

Please check the following table, summing up possible values for each trade type that can have

others trade condition and trade sub type:

Regular Trade (bit 13=1) Block Trade (bit 14=1) No Block / No Regular

(bit 13=0 and bit 14=0)

Trade

Condition

Trade

SubType

Trade

Condition

Trade

SubType

Trade

Condition

Trade

SubType

Opening Price

Last Trade At

The Same

Price

RFQ trade Opening Price Leg trade

Crossed

Trade On

Behalf

Block Book

trade

Crossed Multi Asset

trade

Last Trade at

The Same Price

Midpoint

trade

Last Trade at

The Same Price

RLP

Trade on Behalf

Trade on Behalf

 Sweep

Trade

Crossed Sweep

Trade

 So, in the other hand when you receive a trade condition Regular Trade equals to zero (bit 13=0)
it means that exists a TrdSubType value associated with, and it is a non-regular trade as well.

You can also check it on the table in section 12.3.2.

12.4 Trade Bust

The TradeBust message is sent when a trade is cancelled (busted) by Market Supervision. The

fields are almost equal to the Trade message.

Tag Tag Name Presence Comments

48 securityID R Security ID as defined by B3. For the SecurityID list, see the

Security Definition message in Market Data feed.

37035 matchEventIndicator R Set of indicators that identify some market data events. Here are

the possible bits applied to this message when it is set:

Bit 4: Bust of a trade resulted from an implied generated order.

Bit 7: Last message for the event.

336 tradingSessionID R Identifier for trading session.

270 mDEntryPx R Price of the Market Data Entry.

271 mDEntrySize R Quantity or volume represented by the Market Data Entry.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

85 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Tag Tag Name Presence Comments

1003 tradeID R Contains the unique identifier for this trade per instrument +

trading date, as assigned by the exchange.

75 tradeDate R Used to specify the trading date for which a set of market data

applies.

37033 mDEntryTimestamp R Timestamp when the trade bust event occurred.

12.5 Forward Trade

Trades for Forward (“Termo”) instruments use the message ForwardTrade. There are two
additional fields:

Tag Name Pres. Comments

37014 mDEntryInterestRate O Interest Rate of the Termo Trade. Expressed in decimal form. For example,

1% points is expressed and sent as 0.01. One basis point is represented

as 0.0001.

287 sellerDays O Specifies the number of days that may elapse before delivery of the

security.

12.6 Last Trade Price

The LastTradePrice message is sent mainly in snapshot stream with the last trade price and other

statistics. In incremental stream, it is sent very rarely, to adjust the last trade price after a

catastrophic failure in the publishing service.

In the scenario where this message is been published in the incremental stream, tradeCondition

field does not reflect the previous conditions of the related trade event. So, all the bits of this field

are 0 (zero).

Here are some of the FIX tags sent for a LastTradePrice message:

Tag Name Pres. Comments

48 securityID R Security ID as defined by B3. For the SecurityID list, see the Security

Definition message in Market Data feed.

37035 matchEventIndicator R Set of indicators that identify some market data events. Here are the

possible bits applied to this message when it is set:

Bit 4: Trade resulted from an implied generated order.

Bit 7: Last message for the event.

270 mDEntryPx O Last Trade Price. In snapshot stream, copied from lastPx field from

ExecutionSummary message.

37033 sellerDays O Specifies the number of days that may elapse before delivery of the security.

Only used for trades in forward market.

37014 mDEntryInterestRate O In snapshot stream, copied from this field from ForwardTermo message; only

sent for forward (“termo”) instruments.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

86 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

12.7 Trading Session High/Low Price

These messages are sent in incremental and snapshot streams.

Tag Name Values Comments

269 mDEntryType C “7” (High) – for HighPrice message.

“8” (Low) – for LowPrice message.

48 securityID R Security ID as defined by B3. For the SecurityID list, see the

Security Definition message in Market Data feed.

270 mDEntryPx R High price, low price.

75 tradeDate R Used to specify the trading date for which a set of market data

applies.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

87 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

12.8 Calculation of Trading Session VWAP Price

VWAP Price comes in ExecutionStatistics messages as the VwapPx field (tag 37778).

VWAP is calculated as below:

The Volume-Weighted Average Price is the ratio of the value traded to the total volume traded

over the trading session. It is calculated by the formula:

𝑃𝑉𝑊𝐴𝑃 =
∑ 𝑃𝑗𝑄𝑗𝑗

∑ 𝑄𝑗𝑗

where:

𝑃𝑉𝑊𝐴𝑃 is the Volume Weighted Average Price

𝑃𝑗 is the price of trade 𝑗

𝑄𝑗 is the quantity of trade 𝑗

𝑗 is each individual trade that takes place over the defined period (including cross trades)

12.9 Opening Price / Theoretical Opening Price / Closing Price

The message OpeningPrice carries the summary information about opening trading session

events per market data stream.

The message TheoreticalOpeningPrice carries the theoretical opening price, that is calculated

and updated based on the orders presented in the book during every auction, including the pre-

opening and pre-closing auction.

The message ClosingPrice carries the summary information about closing trading sessions per

market data stream, including the previous day’s adjusted closing price.

The messages are summarized below (R= required, O=optional, C = constant):

 OpeningPrice message

Here are the main fields of the OpeningPrice message.

Tag Tag Name Pres. Data Type Comments

48 securityID R SecurityID Security ID as defined by B3. For

the SecurityID list, see the Security

Definition message in Market Data

feed.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

88 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Tag Tag Name Pres. Data Type Comments

37035 matchEventIndicator R MatchEventIndicator Set Set of indicators that identify some
market data events. Here are the
possible bits applied to this
message when it is set:
Bit 7: Last message for the event.

286 openCloseSettlFlag R OpenCloseSettlFlag Enum Identifies if the opening price

represents or not a daily opening

price.

270 mDEntryPx R Price Value of the statistics.

451 netChgPrevDay O PriceOffset8Optional Net change from previous trading

day’s closing price vs. last traded

price.

75 tradeDate R LocalMktDate Used to specify the trading date for

which a set of market data applies.

 TheoreticalOpeningPrice message

Here are the main fields of the TheoreticalOpeningPrice message.

Tag Tag Name Pres. Data Type Comments

48 securityID R SecurityID Security ID as defined by B3. For the

SecurityID list, see the Security Definition

message in Market Data feed.

37035 matchEventIndicator R MatchEventIndicator

Set

Set of indicators that identify some market
data events. Here are the possible bits
applied to this message when it is set:
Bit 7: Last message for the event.

286 openCloseSettlFlag C OpenCloseSettlFlag

Enum

Indicates this is a theoretical opening

price. Constant: 5 (Theoretical Price)

270 mDEntryPx O PriceOptional Theoretical Opening Price.

271 mDEntrySize O QuantityOptional Theoretical Opening Quantity.

75 tradeDate R LocalMktDate Used to specify the trading date for which

a set of market data applies.

 ClosingPrice message

Here are the main fields of the ClosingPrice message.

Tag Tag Name Pres. Data Type Comments

48 securityID R SecurityID Security ID as defined by B3. For the

SecurityID list, see the Security Definition

message in Market Data feed.

37035 matchEventIndicator R MatchEventIndicator

Set

Set of indicators that identify some market
data events. Here are the possible bits
applied to this message when it is set:
Bit 7: Last message for the event.

286 openCloseSettlFlag R OpenCloseSettlFlag

Enum

Identifies if the closing price represents a

daily or entry from previous business day.

270 mDEntryPx R Price8 Closing price.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

89 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

75 tradeDate R LocalMktDate Used to specify the trading date for which

a set of market data applies.

9325 lastTradeDate O LocalMktDateOptional Date the instrument last traded.

12.10 Auction Imbalance

The message AuctionImbalance relays auction imbalance information, indicating the remaining

quantity and to which side (buyer or seller) the auction is pending towards.

 AuctionImbalance message

Here are the main fields of the AuctionImbalance message.

Tag Tag Name Pres. Data Type Comments

48 securityID R SecurityID Security ID as defined by B3. For the

SecurityID list, see the Security Definition

message in Market Data feed.

37035 matchEventIndicator R MatchEventIndicator

Set

Set of indicators that identify some market
data events. Here are the possible bits
applied to this message when it is set:
Bit 7: Last message for the event.

277 imbalanceCondition R ImbalanceCondition

Set

IMBALANCE_MORE_BUYERS,

IMBALANCE_MORE_SELLERS, All bits off

=> BALANCED.

271 mDEntrySize O QuantityOptional Remaining auction quantity.

12.11 Price and Quantity Bands Information

The message PriceBand relays most of the information regarding price tunnels and bands; the

message QuantityBand relays most of the information regarding quantity tunnels and bands. They

are relayed on the Market Data channel for each specific instrument.

The following types of bands and limits are supported:

PriceBand (PriceBandType) QuantityBand

Hard Limits (HARD_LIMIT)

Rejection Band (REJECTION_BAND)

Auction Band (AUCTION_LIMITS)

Static Limits (STATIC_LIMITS)

Reference Price (PriceBandType is omitted) Quantity Limit (Equities only)

NOTE

Client applications are responsible for deleting the existing theoretical opening price
and imbalance information from memory after trading phase changes from Pre-Open
(tag 625-TradingSessionSubID = 21) for each instrument in the group whose trading
status is different from Pre-Open status (tag 326-SecurityTradingStatus = 21).

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

90 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

91 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 PriceBand message

Here are the main fields of the PriceBand message.

Tag Tag Name Pres. Data Type Comments

48 securityID R SecurityID Security ID as defined by B3. For the

SecurityID list, see the Security

Definition message in Market Data feed.

37035 matchEventIndicator R MatchEventIndicator

Set

Set of indicators that identify some
market data events. Here are the
possible bits applied to this message
when it is set:
Bit 7: Last message for the event.

6939 priceBandType O PriceBandType

Enum

Indicates the type of price banding

(tunnel).

1306 priceLimitType O PriceLimitType

Enum

Describes how the price limits are

expressed.

37008 priceBandMidpointPriceType O PriceBandMidpoint-

PriceType Enum

Band Midpoint Type, used with Auction

Price Banding. Only sent for Rejection

and Auction Bands when PriceLimitType

(1306) equals to 2 (Percentage).

1148 lowLimitPrice O PriceOptional Allowable low limit price for the trading

day. A key parameter in validating order

price. Used as the lower band for

validating order prices. Orders submitted

with prices below the lower limit will be

rejected.

1149 highLimitPrice O PriceOptional Allowable high limit price for the trading

day. A key parameter in validating order

price. Used as the upper band for

validating order prices. Orders submitted

with prices above the upper limit will be

rejected.

qsnip

p1150

tradingReferencePrice O PriceOptional Reference price for the current trading

price range. The value may be the

reference price, settlement price or

closing price of the prior trading day.

Sent only for Economic Indicators.

If a client system tracks bands for a purpose, it is important to know that the PriceBandType

attribute is a qualifier of the price band information: Hard Limits, Reject Band, Auction Band, and

Static Limits can coexist simultaneously. An update must be applied specifically to the informed

type, keeping the previously defined band attributes for the other types.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

92 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 QuantityBand message

Here are the main fields of the QuantityBand message.

Tag Tag Name Pres. Data Type Comments

48 securityID R SecurityID Security ID as defined by B3. For the

SecurityID list, see the Security Definition

message in Market Data feed.

37035 matchEventIndicator R MatchEventIndicator

Set

Set of indicators that identify some
market data events. Here are the
possible bits applied to this message
when it is set:
Bit 7: Last message for the event.

37003 avgDailyTradedQty O QuantityVolumeOptional Daily average shares traded within 30

days – equity market only. Always 0 for

Derivatives.

1140 maxTradeVol O QuantityVolumeOptional The maximum order quantity that can be

submitted for a security. The value is the

minimum between % of shares issued

and % of average traded quantity within

30 days.

The tunnels don´t change intraday. It is also known as “oscillation tunnel” establishing the price

limits (lower and higher) of an instrument. Any order submitted with a price below the low limit or

above the high limit will be rejected.

 SettlementPrice message

Here are the main fields of the SettlementPrice message:

Tag Tag Name Pres. Data Type Comments

48 securityID R SecurityID Security ID as defined by B3. For the

SecurityID list, see the Security Definition

message in Market Data feed.

37035 matchEventIndicator R MatchEventIndicator

Set

Set of indicators that identify some market
data events. Here are the possible bits
applied to this message when it is set:
Bit 7: Last message for the event.

75 tradeDate R LocalMktDate Used to specify the trading date for which

settlement price applies.

270 mDEntryPx R Price Settlement Price.

286 openCloseSettlFlag R OpenCloseSettlFlag Identifies if the settlement price represents a

daily, preliminary or an entry from previous

business day.

423 priceType R PriceType Code to represent the price type:

PERCENTAGE, PU or FIXED AMOUNT.

731 settlPriceType R SettlPriceType Type of settlement price:

FINAL, THEORETICAL or UPDATED.

It’s advised that the client application is able to process any combination of the

openCloseSettlFlag (tag 286) and settlPriceType (tag 731) fields.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

93 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

The following table illustrates the regular schedule:

Event Time OpenCloseSettlFlag SettlPriceType Description

Before
trading
session

ENTRY_FROM_PREVIOUS_BUSINESS_DAY FINAL Previous day final settlement.

During
trading
session

ENTRY_FROM_PREVIOUS_BUSINESS_DAY UPDATED Previous day updated settlement.

During
trading
session

DAILY UPDATED Current day preview settlement.

After trading
session

DAILY FINAL Current day final settlement.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

94 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 OpenInterest message

Here are the main fields of the OpenInterest message:

Tag Tag Name Pres. Data Type Comments

48 securityID R SecurityID Security ID as defined by B3. For the

SecurityID list, see the Security Definition

message in Market Data feed.

37035 matchEventIndicator R MatchEventIndicator

Set

Set of indicators that identify some market
data events. Here are the possible bits
applied to this message when it is set:
Bit 7: Last message for the event.

75 tradeDate R LocalMktDate Used to specify the trading date for which

open interest applies.

271 mDEntrySize R Quantity Indicates volume of contracts currently open.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

95 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

 Specific usage for each type of Band and Tunnel

Tag Name

Refer-

ence

Price

Hard

Limits

Rejection Band

Auction Band Static

Limits

Quantity

Limits

48 SecurityID X X X X X X

207 Security-

Exchange

X X X X X X

37033 MDEntry-

Timestamp

X X X X X X

6939 PriceBand-

Type

- 1

(HARD_-

LIMIT)

3 (REJECTION-

_BAND)

2 (AUCTION-

_LIMITS)

4 (STAT-

IC-

_LIMITS)

-

1306 PriceLimit-

Type

- 0

(PRICE_-

UNIT)

2 (PERCENT-

AGE

0 (PRICE_UNIT))

2 (PERCENTAGE

0 (PRICE_UNIT))

0 (PRICE-

_UNIT)

-

1148 LowLimit-

Price

- X X X X -

1149 HighLimit-

Price

- X X X X -

1150 Trading-

Reference-

Price

C - - - - -

37008 PriceBand-

Midpoint-

PriceType

- - LAST_-

TRADED_-

PRICE,

COMPLEMEN-

TARY_LAST-

_PRICE,

THEORETICAL-

_PRICE (When

1306= PER-

CENTAGE)

LAST-

_TRADED_PRICE,

COMPLEMEN-

TARY_-

LAST_PRICE,

THEORETICAL_-

PRICE (When

1306= PERCENT-

AGE)

- -

37003 AvgDaily-

TradedQty

- - - - - X

1140 MaxTrade-

Vol

- - - - - X

*Tags marked with an “X” are required, those marked with “-“ are not sent, otherwise they have the specified values.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

96 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

13. Group Phase/Instrument State Information

B3 will relay the state of an individual instrument or a group of instruments using the following

messages:

• SecurityStatus – in incremental and snapshot stream. Used to relay instrument state

changes intraday.

• SecurityGroupPhase – in incremental and snapshot stream. Used to relay security

group phase changes intraday.

When the client system starts up, it should consider that all snapshots contain the current phase

of the security group and current state of the individual instrument if it is detached from the security

group it belongs, informed by tag 1174-SecurityTradingEvent = 101-“Security Status maintained

separately from Group Status”. Intraday updates may be done on the instrument level or group

level.

When processing the SecurityGroupPhase message in the incremental stream, client systems

must first look for tag 1151-SecurityGroup. This tag contains the group identification of a set of

instruments. That being the case, all individual instruments of that set will have their status

changed to the value of tag 625–TradingSessionSubID. The following message example

illustrates the change of trading phase of the group “XX” to “PAUSE”:

SecurityGroupPhase message

Tag Tag Name Value

1151 securityGroup XX

207 securityExchange BVMF

625 tradingSessionSubID 2 (PAUSE)

A SecurityStatus message refers to an instrument, referred to tag 48-SecurityID.

Suppose that the group phase is 17 (OPEN) but the instrument state changes to 2 (PAUSE),

separating from the group phase. In this case, the tag SecurityTradingEvent will be 101

(SECURITY_STATUS_CHANGE):

SecurityStatus message

Tag Tag Name Value

48 securityID 99999999

207 securityExchange BVMF

NOTE

Group codes may repeat amongst different exchanges, hence it is advisable that
client systems use the key group code (tag 1151 – SecurityGroup) + exchange (tag
207 – SecurityExchange).

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

97 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

SecurityStatus message

326 securityTradingStatus 2 (PAUSE)

1174 securityTradingEvent 101 (SECURITY_STATUS_CHANGE)

Now if the instrument state return to 17 (OPEN), following the group phase, the

SecurityTradingEvent will be 102 (SECURITY_REJOINS_SECURITY_GROUP_STATUS):

SecurityStatus message

Tag Tag Name Value

48 securityID 99999999

207 securityExchange BVMF

326 securityTradingStatus 17 (OPEN)

1174 securityTradingEvent 102 (SECURITY_REJOINS_SECURITY_GROUP_STATUS)

An important note is that in snapshots, if the value of securityTradingStatus field is null, it means

the instrument status follows the status of the security group. For example, if the value of

tradingSessionSubID field is OPEN for the group of the related instrument, it means the security

status of that instrument is also OPEN even the value of the securityTradingStatus field is null.

Please see the complete SecurityStatus and SecurityGroupPhase message format at UMDF SBE

Message Reference document.

NOTE

Whenever an instrument state rejoins the group phase (1174=102), it is safe
to infer the group phase (tag 625) from the current instrument state (tag 326).

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

98 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

13.1 Instrument States

The list of the different instrument states available on the tag 326-SecurityTradingStatus is

indicated in the following table:

Name Tag Value Description

Trading halt

(PAUSE)

2 This instrument state is used by surveillance to prevent order entry and

matching by market operations or schedule.

Orders in the book are not eliminated when instrument entering this

state.

No-Open

(CLOSE)

4 This instrument state is used by market surveillance to perform a limited

number of functions, including in particular, consultations.

Users have no order entry, modification or cancel capability during this

phase.

Ready to trade

(OPEN)

17 This instrument state is used by subscribers and surveillance to enter,

modify, and cancel orders, subject to cancellation and modification rules.

The orders entered during this period result in immediate trading if

counterparty is matched and the specific instrument status also equals to

“Open”. Otherwise, the more restrictive status rules.

Not available for

trading

(FORBIDDEN)

18 This instrument state is used by surveillance to prevent order entry and

matching by market operations command or schedule.

Users have no order entry, modification or cancel capability during this

phase.

Pre-Open

(RESERVED)

21 Reserved state is the auction functionality that can be triggered (auction

band and self-trading for illiquid instrument, for example) or started by

Market Operations by command. Time of state can be pre-defined. The

reserve state can have a defined time with the fixed closed (opening)

time or random closed (opening) time.

This state is used by subscribers and surveillance to enter, modify, and

cancel (subject to cancellation and modification rules) orders.

The orders entered during this period do not result in immediate trading

but are used to determine a Theoretical Opening Price.

State ended when trades are created based on auction algorithm prior to

transition to another state.

FINAL_CLOSING_CALL 101 This state indicates when the instrument is on the final closing call for

the trading day (Equities only). It behaves similarly to Reserved state.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

99 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

13.2 Trading Phases

A trading phase identifies the “state” of a whole group of instruments in terms of trading session.

By default, all instruments follow the trading phase of the group they belong to.

For example, group “XX” may be in trading phase “Open”, but instrument ABCD that belongs to

group “XX” is in the “Pause” status – due to market surveillance command. This information is

especially useful when client systems want to determine the state of the group altogether and

outlining the individual state of the instrument.

Trading phase information is relayed to client systems using tag 625–TradingSessionSubID.

The following table presents the domain of possible trading phases:

Name Tag Value Description

PAUSE 2 This trading phase is used by surveillance to prevent order entry and matching

by market operations or schedule.

CLOSE 4 This trading phase is used by market surveillance to perform a limited number of

functions, including in particular, consultations.

As a rule, during this phase, surveillance checks the consistency of data and

post-market state process results before the start of the trading day.

Users have no order entry, modification or cancel capability during this phase.

OPEN 17 This trading phase is used by subscribers and surveillance to enter, modify, and

cancel orders, subject to cancellation and modification rules.

The orders entered during this period result in immediate trading if counterparty

is matched and the specific instrument status also equals to “Open”. Otherwise,

the more restrictive status rules.

FORBIDDEN

(Pre-Close)

18 This trading phase is used to indicate an intervention by surveillance. If the

specific instrument is in “Reserved” state, the auction continues, otherwise users

have no order entry, modification or cancel capability during this phase.

RESERVED

(Pre-Open)

21 This trading phase is used to indicate that all instruments belong to the group is

in “Reserved” state except the status of the instrument indicates “Forbidden”

state.

FINAL_CLOSIN

G_CALL

101 This phase indicates when the instruments on this group are on the final closing

call for the trading day (Equities only). It behaves similarly to Pre-Close phase,

however when entering this phase, MOC orders are triggered.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

100 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

13.3 Trading Statistics Reset

If customer systems receive a SecurityStatus message with the tag 1174-SecurityTradingEvent

with value 4 (TRADING_SESSION_CHANGE), it is an event of “end of day trading statistics

reset”.

On receipt of this message and flag, client systems are expected to reset the information that is

received in the following messages:

MDEntryType Description

LastTradePrice Last trade

ExecutionStatistics Execution statistics information (VWAP, TradeVolume, NumberOfTrades)

OpeningPrice Opening price

TheoreticalOpeningPrice Theoretical opening price

HighPrice Trading session high price

LowPrice Trading session low price

The statistics above will also be reset in the snapshot stream.

13.4 Group Phase and Instrument State in the Snapshot Stream

The snapshot stream publishes, for each security group, the current security group phase as a

SecurityGroupPhase message, and for each instrument, the current state of an instrument as a

SecurityStatus message.

The “snapshot” reflects the last state of the instrument and the last correlated phase that affected

the group to which the instrument belongs to.

14. Derivatives/FX Specific Market Data Functionality

This section refers to the Derivatives/FX segment functionality only, and important technical

information for B3 customers on how to process this data.

14.1 Option Strike Price

Some instruments disseminated on the options channels are not options per se, but spreads on

options, this happens with Rollovers and Strategies. The decision was made to keep them on the

same channel as their underlying options, even though they are not proper options.

Hence, as such instruments are not options, the strike price field (tag 202-StrikePrice) will not

be sent or sent as zero.

The proper way to identify these instruments is checking their security subtype (tag 762-

SecuritySubType). The following subtypes are used to identify them:

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

101 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Product Description Tag 762 (SecuritySubType) value

Strategies 90 (STRATEGY)

Financial Rollover 140 (FINANCIAL_ROLLOVER)

Agricultural Rollover 141 (AGRICULTURAL_ROLLOVER)

15. Trade Volume, VWAP and Number of Trades

On Binary UMDF, the total traded volume on the electronic platform, as well as the VWAP price

and the number of trades in the current session, are reported on the ExecutionStatistics message.

16. Implieds

The Implied functionality consists of deriving tradable orders (a synthetic order) generated from

orders of two or more legs of an instrument (spreads or strategies), i.e., it allows orders to be

created in a book from two other orders from different books. Messages that directly handle that

synthetic order (Order_MBO and DeleteOrderMBO) can be identified with bit-4 (Implied) of the

matchEventIndicator field. Messages that indirectly handle synthetic orders

(MassDeleteOrders_MBO) do not have bit-4 (Implied) set to true because there could be regular

orders also involved in the operation.

An implied order can only be created from orders from outright book in a spread / strategy book

(Implied In) or from orders from an outright book and orders from a spread / strategy book in an

outright book (Implied Out).

If one of the orders of the outright instrument that generated the implied order is fully or partially

executed, cancelled or modified, the implied order is automatically cancelled. If the new calculated

quantity of the implied order still exists after that, a new synthetic order is restated in same event

in case of modification/cancellation or another event in case of any full / partial execution.

In case of events related to one of its outright like triggered stop orders, restatement of iceberg

orders, full / partial executions and accepted mass cancels, the synthetic order in the spread /

strategy is cancelled, and it will only go back to the public book after a new/modify/cancel of orders

in the spread / strategy or one of its related outright.

NOTE

An implied order has always the least priority at the same price-level in the book.
So, when a new normal order enters in the book and has the same price as the
existent implied order, it has the precedence over (position number is less than
existing implied order) even though it enters after that.

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

102 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Instruments that are eligible to be used in the Implied mechanism have the impliedMarketIndicator

field (tag 1144) enabled in the SecurityDefinition message.

16.1 Implied In orders

These orders are derived from existing outright orders in individual contracts (legs). This means

that an outright order in a spread can be matched with other outright orders in the spread / strategy

OR with a combination of orders in the legs of the spread / strategy based on price and the rules

corresponding to the method of allocation being used.

Example:

Moment #1: Client X inserts a buy order with 10 @ 6.99 in DI1F24:

DI FUT – DI1F24 (maturity: Jan/24)

Bid Qtd Bid Price Offer Price Offer Qtd

10 6.99 (A)

Moment #2: Client Y inserts a sell order with 10 @ 7.34 in DI1N24:

DI FUT – DI1N24 (maturity: Jul/24)

Bid Qtd Bid Price Offer Price Offer Qtd

 7.34 (B) 10

Moment #3: the combination of 2 orders above generates an implied (IN) order in offer book with

10 @ 0.35 in DIIF24N24 (spread of maturities of F24 and N24 with ratio = 1):

Spread of Sell DI1F24 and Buy DI1N24 (DIIF24N24)

Bid Qtd Bid Price Offer Price Offer Qtd

 0.35 (B - A) 10

Order book updates for the Implied In scenario:

Message Instrument MDEntry

Type

MDUpdate

Action

MDEntry

Px

MDEntry

Size

MDEntryPosition

No

MatchEvent

Indicator

Order_MBO DI1F24 0 (Bid) 0 (NEW) 6.99 10 1 0

Order_MBO DI1N24 1 (Offer) 0 (NEW) 7.34 10 1 0

Order_MBO DIIF24N24 1 (Offer) 0 (NEW) 0.35 10 1 16 (4-bit)

To illustrate the least priority nature of implied order, imagine that a trader enters now enters a
new order with the same price as the existing implied order at the same side of the book:

Moment #4: Client Z inserts a sell order with 15 @ 0.35 in DIIF24N24:

Message Instrument MDEntry

Type

MDUpdate

Action

MDEntry

Px

MDEntry

Size

MDEntryPosition

No

MatchEvent

Indicator

Order_MBO DIIF24N24 1 (Offer) 0 (NEW) 0.35 15 1 0

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

103 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

The resulted book is:

Spread of Sell DI1F24 and Buy DI1N24 (DIIF24N24)

Bid Qtd Bid Price Offer Price Offer Qtd

 0.35 (Normal) 15

 0.35 (Implied) 10

16.2 Implied Out orders

These orders are derived from the combination of an existing outright order in a spread / strategy

and an existing outright order in one of the individual underlying legs. These two outright orders

are utilized to create a contingent outright order on the other underlying leg of the spread. This

means that an outright order in a leg can be matched with other outright orders for this specific

leg OR with a combination of orders from any spread/strategy composed of this leg and orders

of the other corresponding leg of the spread. This feature is not yet available, and the

availability will be announced through appropriate channels in time.

16.3 Match that involves an implied order

A match event that involves an implied order generates trades and book order updates in the

market data. The trade message that has resulted from a match that involves any implied order

has the implied flag set to true in matchEventIndicator field (bit-4). Just like a cancellation of a

trade (trade bust) that involved an implied order also has the implied flag set to true in

matchEventIndicator field (bit-4).

When the partial match occurs that involves the synthetic order, the remaining quantity of the

synthetic order is cancelled in the same event to avoid any inconsistencies because the

availability of any quantity of the synthetic order depends on some verifying the common factors

of the outrights, and it is expensive enough for latency perspective to compute in the same event.

After that, in another event, the synthetic order may be restated in the book of the spread /

strategy with another secondaryOrderID value.

In continuation of the first example (Implied In):

Moment #5: client Z does an aggression of the normal and implied order inserting a bid order

with 20 @ 0.35 in DIIF24N24:

Spread of Sell DI1F24 and Buy DI1N24 (DIIF24N24)

Bid Qtd Bid Price Offer Price Offer Qtd

20 0.35 0.35 (Normal) 15

 0.35 (Implied) 10

Trades generated in this event:

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

104 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

Instrument MDEntryType MDEntryPx MDEntrySize MatchEventIndicator

DIIF24N24 2 0.35 15 0

DIIF24N24 2 0.35 5 16 (bit-4)

DI1F24 2 6.99 5 16 (bit-4)

DI1N24 2 7.34 5 16 (bit-4)

Resulted book:

Spread of Sell DI1F24 and Buy DI1N24 (DIIF24N24)

Bid Qtd Bid Price Offer Price Offer Qtd

 0.35 5

DI FUT – DI1F24 (maturity: Jan/24)

Bid Qtd Bid Price Offer Price Offer Qtd

5 6.99

DI FUT – DI1N24 (maturity: Jul/24)

Bid Qtd Bid Price Offer Price Offer Qtd

 7.34 5

Order book updates (same event):

Message Instrument MDUpdate

Action

MDEntry

Type

MDEntryPx MDEntry

Size

MDEntryPosition

No

MatchEvent

Indicator

MassDeleteOrders

_MBO

DIIF24N24 4 (Delete

From)

1 (Offer) - 25 2 0

Order_MBO DI1F24 1

(Change)

1 (Bid) 6.99 5 1 0

Order_MBO DI1N24 1

(Change)

0 (Offer) 7.34 5 1 0

Restate of the synthetic order in the spread (another event):
Message Instrument MDUpdate

Action

MDEntry

Type

MDEntryPx MDEntry

Size

MDEntryPosition

No

MatchEvent

Indicator

Order_MBO DIIF24N24 0 (New) 1 (Offer) 0.35 5 1 16 (4-bit)

Market Data B3: Binary UMDF
MESSAGING SPECIFICATION GUIDELINES – VERSION 1.9.0.5

105 INFORMAÇÃO PÚBLICA – PUBLIC INFORMATION

17. Miscellaneous Remarks

• Trades marked with 277-TradeCondition with bit 3 set (OutOfSequence) represent

trades that are reported out of sequence (like market operation entered trades); they must

not be considered if your objective is to get the “last trade price”.

• When processing leg trades (277-TradeCondition has bit 5 set – LegTrade), the trade

price should not be used to infer the Last Trade Price.

• In FIX/FAST market data diffusion, B3 maps the secondaryOrderID field (198) from Order

Entry to the OrderID field (37) in Market Data. In Binary UMDF, the secondaryOrderID

tag (198) from Order Entry and the secondaryOrderID field (198) in Market Data have the

same content. The behavior continues the same: a Market Data client cannot see the real

OrderID from Order Entry. Whenever an order loses priority in the book (for instance,

because it was modified and the quantity was increased or the price was changed), it

appears that the order gets deleted and a new order is added with the new parameters,

and the value of tag 198 – secondaryOrderID changes. For Iceberg orders (display

quantity is different from real quantity), when the order is refilled, the value of tag 198 –

secondaryOrderID also changes, in order to make more difficult to distinguish between

regular and iceberg orders).

The diagram above what happens with a single order that is entered: the value of the field

secondaryOrderID in ExecutionReport message is broadcast as the secondaryOrderID field in

OrderMBO message.

• When a trade deletion (“trade bust”) is sent, i.e., a TradeBust message, no prices are

resent. The other prices are only changed automatically if all trades are cancelled. In this

case some of the prices can be deleted as well.

